Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лакунарность.Фрактальные кривые с одинаковой размерностью D , но разными значениями N и r могут качественно отличаться одна от другой. Ответственный за это параметр, отличный от D , обсуждается в главе 34. ►

Рис 83 КВАДРАТИЧНЫЙ ОСТРОВ КОХА РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D ln18 ln6 - фото 24

Рис. 83. КВАДРАТИЧНЫЙ ОСТРОВ КОХА (РАЗМЕРНОСТЬ БЕРЕГОВОЙ ЛИНИИ D= ln18 / ln6 ~1,6131 )

На этих рисунках изображены те же конструкции, что и на рис. 79, только с другими генераторами. Вот так выглядит генератор для кривой на рис. 85:

а так для кривой на рис 84 Дамбы и каналы этих лоцманских кошмаров - фото 25

а так — для кривой на рис. 84:

Дамбы и каналы этих лоцманских кошмаров становятся все уже по мере того как мы - фото 26

Дамбы и каналы этих лоцманских кошмаров становятся все уже по мере того, как мы продвигаемся по направлению к самым дальним мысам полуостровов или самым врезающимся в сушу языкам бухт. Вдобавок ко всему, стремление к сужению наблюдается и по мере роста фрактальной размерности, причем при D~5/3 у этих дамб и каналов появляются «осиные талии».

< О турбулентной дисперсии.На мой взгляд, между последовательностью приближений фрактальных кривых, изображенных на рис. 85, и последовательными стадиями турбулентной дисперсии чернил в воде существует поразительное сходство. Разумеется, реальная дисперсия несколько менее упорядочена, однако это можно имитировать, введя в процесс построения элемент случайности.

Можно сказать, что здесь мы наблюдаем ричардсонов каскад «в деле». Исходная малая толика энергии размазывает квадратное пятно чернил по поверхности воды. Затем первоначальное завихрение расщепляется на меньшие завихрения, воздействие которых носит более локальный характер. Исходная энергия разделяется на все уменьшающиеся порции, пока в конце концов не остается ничего, кроме легкой размытости контуров образовавшегося в результате пятна, как показано на приведенной ниже иллюстрации, позаимствованной из работы Коррсина [87].

Рис 84 и 85 КВАДРАТИЧНЫЕ ОСТРОВА КОХА РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ - фото 27

Рис 84 и 85 КВАДРАТИЧНЫЕ ОСТРОВА КОХА РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ - фото 28

Рис. 84 и 85. КВАДРАТИЧНЫЕ ОСТРОВА КОХА (РАЗМЕРНОСТИ БЕРЕГОВЫХ ЛИНИЙ D=5/3~1,6667 И D= ln98 / ln14 ~1,7373 )

То, что ричардсонов каскад порождает фигуру, ограниченную фрактальной кривой, несомненно. А вот с выводом о том, что ее размерность D=5/3 , спешить не стоит. Это значение D соответствует плоским срезам пространственных поверхностей с размерностью D=8/3 , какие часто встречаются в турбулентности. В случае изоповерхностей скалярных величин (рассматриваемых в главе 30) размерность D=8/3 можно объяснить в рамках теории Колмогорова. И все же я бы не стал доверять нумерологическим аналогиям.

В сущности значение D зависит скорее всего от начальной энергии жидкости и - фото 29

В сущности, значение D зависит, скорее всего, от начальной энергии жидкости и от размера сосуда, в котором имеет место дисперсия. При низкой начальной энергии из круглого пятна получится кривая с размерностью D , близкой к 1 (см. рис. 79). При высокой начальной энергии, да еще в маленьком сосуде, можно будет наблюдать более сложную дисперсионную картину, плоские срезы которой будут больше похожи на рис. 84 ( D~1,7373 ); их размерность может даже достичь значения D=2 (см. главу 8). См. также работу [386].

Если последнее заключение верно, следующим шагом необходимо изучить связь между начальной энергией и D и отыскать наименьшее значение энергии, при котором плоский срез пятна имеет D=2 (или D=3 в пространственном случае). Исследовав предельный случай D=2 (см. главу 7), мы убедимся, что он качественно отличается от случая D<2 , так как позволяет любым двум частицам чернил, которые в начале процесса были далеко друг от друга, прийти в асимптотическое соприкосновение. <���Я бы совсем не удивился, если бы оказалось, что за одним термином «турбулентная дисперсия» скрываются два совершенно отличных друг от друга феномена. ►

Постскриптум. Уже после того, как эта иллюстрация появилась во «Фракталах» 1977 г., Пол Димотакис сфотографировал тонкие срезы турбулентной струи, рассеивающейся в ламинарной среде. Сходство снимков с иллюстрацией весьма меня порадовало. ►

Рис 87 и 88 ОБОБЩЕННЫЕ КРИВЫЕ КОХА И САМОПОДОБИЕ С НЕРАВНЫМИ КОЭФФИЦИЕНТАМИ - фото 30

Рис. 87 и 88. ОБОБЩЕННЫЕ КРИВЫЕ КОХА И САМОПОДОБИЕ С НЕРАВНЫМИ КОЭФФИЦИЕНТАМИ ( D~1,4490 , D~1,8797 , D~1+ε )

При построении этих конструкций использован метод Коха, но с неравными длинами сторон r m генератора. До сих пор мы подразумевали, что ко всем N «частям», на которые делится наше «целое», применяется один и тот же коэффициент подобия r . При неравных коэффициентах r m кривая Коха несколько теряет в своей неумолимой правильности. На рис. 87 вы можете видеть модифицированную таким образом троичную кривую Коха.

Заметьте, что во всей предшествующей серии иллюстраций построение кривой продолжалось до тех пор, пока не достигало мельчайших деталей заранее определенного размера. Когда r m =r , искомая цель достигается за некоторое заранее определенное число этапов построения, здесь же необходимое число этапов оказывается переменным.

Теперь перед нами стоит задача распространить на данное обобщение рекурсии Коха - фото 31

Теперь перед нами стоит задача распространить на данное обобщение рекурсии Коха концепцию размерности подобия. Предположим для начала, что некая стандартная евклидова фигура покрывается подобными ей частями, уменьшенными соответственно в r m раз. При D=1 значение r m должно удовлетворять равенству Σr m =1 ; в общем случае евклидовы фигуры требуют равенства ∑r m D=1 . Далее, для случая фрактальных кривых, которые могут быть разделены на равные части, уже знакомое нам условие Nr D =1 также можно переписать как ∑r m D=1 . Исходя из этих соображений, мы можем построить ренерирующую размерность функцию G(D)=∑r m D и определить D как ее единственный действительный корень при G(D)=1 . Остается выяснить, совпадает ли наша размерность D с размерностью Хаусдорфа-Безиковича. Да, совпадает — по крайней мере, во всех случаях, о которых мне известно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x