Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
И еще.Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.
Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ D=2 : ОРИГИНАЛЬНАЯ КРИВАЯ ПЕАНО, ПРОХОЖДЕНИЕ КВАДРАТА
Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.
Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:
Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После n -го этапа построения терагон Коха выглядит как решетка из прямых с шагом r ) = эта решетка заполняет квадрат, площадь которого равна 2, причем плотность линий быстро возрастает по мере того, как k→∞ (вполне достаточный пример этого однообразного узора показан на рисунке рядом с исходным черным квадратом).
На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.
Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.
Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера x (такого, что η≤x≤1 ) практически пополам!
Интерпретация.Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.
Дальний порядок.Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!
< А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.
Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►
РИС. 98 И 99. КВАДРАТИЧНЫЕ ПОСТРОЕНИЯ КОХА С РАЗМЕРНОСТЬЮ D=2 : ПРОХОЖДЕНИЯ ТРЕУГОЛЬНИКА ПО ЧЕЗАРО И ПО ПОЙА И ИХ ВАРИАНТЫ
Простейшим генератором, какой только можно в этом случае вообразить, является ломаная, состоящая из N=2 равных отрезков, угол θ между которыми удовлетворяет условию 90°≤θ≤180° . В предельном случае θ=180° генератор представляет собой отрезок прямой; случай θ=120° (проиллюстрированный в пояснении к рис. 71) порождает (помимо прочих) троичную кривую Коха. Генератор для предельного случая θ=90° показан ниже:
Используя этот генератор, можно построить невообразимое множество различных кривых Пеано (различия обусловлены формой инициатора и способом помещения генератора на предшествующий терагон). На рис. 98-102 дано несколько примечательных примеров.
< Кроме того, в главе 25 с помощью рандомизации всех кривых Пеано с данными Nr мы получим самое что ни на есть броуновское движение. ►
Прохождение треугольника по Пойа. Инициатор отрезок [0, 1], генератор — как на рисунке вверху. Генератор поочередно занимает правое и левое положение относительно терагона, причем его положение относительно начального отрезка (правое или левое) также поочередно меняется. Ниже показаны третий и четвертый этапы построения:
Терагоны напоминают квадратные куски диаграммной бумаги, запихнутые внутрь прямоугольного равнобедренного треугольника, один из катетов которого и есть исходный отрезок [0, 1]. Предельная кривая проходит по всей внутренней области треугольника.
Рис. 98. Прохождение Пойя по прямоугольному неравнобедренному треугольнику.Изменим генератор таким образом, чтобы он состоял из двух неравных отрезков, расположенных под прямым углом друг к другу. Читателю (в качестве упражнения) остается лишь придумать, как в этом случае построить кривую, избегающую самокасаний.
Читать дальшеИнтервал:
Закладка: