Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

< Кое-кому, возможно, захочется назвать представляемую вашему вниманию кривую фрактальной, однако для этого нам придется пойти на менее строгое определение фракталов, которое бы наряду с размерностью D основывалось еще на каких-то других понятиях. ►

Сингулярные функции.Канторова лестница представляет собой неубывающую и непостоянную сингулярную функцию — сингулярную в том смысле, что она непрерывна, но не дифференцируема. Ее производная обращается в нуль почти везде, к тому же она ухитряется непрерывно изменяться на множестве, длина — т. е. линейная мера — которого стремится к нулю.

Любая неубывающая функция может быть представлена в виде суммы некоторой сингулярной функции, некоторой функции, состоящей из дискретных скачков, и некоторой дифференцируемой функции. Два последних слагаемых являются классикой в математике и широко используются в физике. Сингулярную же составляющую большинство физиков считает абсолютно бесполезной патологией. Последнее мнение является абсолютно безосновательной чепухой — это заявление можно считать лейтмотивом настоящего эссе.

Чертовы лестницы в статистической физике.Публикация этого рисунка в эссе 1977 г. привлекла к чертовым лестницам внимание физиков и послужила стимулом для многочисленных исследований. Все чаще мне встречаются в книгах и статьях графики, напоминающие «занавес» на рис. 121 или занавес Фату на рис. 273. В этой связи рекомендую заглянуть в [9], где разрозненные — хотя и весьма важные — ранние исследования (например, [11], [218]) объединены с новыми разработками в данной области.

III ГАЛАКТИКИ И ВИХРИ

9 ФРАКТАЛЬНЫЙ ВЗГЛЯД НА СКОПЛЕНИЯ ГАЛАКТИК

В главах 6 и 7, призвав на помощь геоморфологию, мы ввели кривые Коха и Пеано, однако объекты наиболее значительных приложений теории фракталов находятся в несколько иных областях. Неспешно подбираясь к основным течениям в науке, мы рассмотрим в этой главе (и в двух последующих) два вопроса исключительной древности, важности и сложности.

Распределение звезд, галактики, скопления галактик и тому подобные материи издавна завораживают как любителей, так и специалистов, однако кластеризация до сих пор остается на периферии астрономии, да и всей астрофизики в целом. Главная причина заключается в том, что никто так и не в состоянии объяснить, почему распределение материи подчиняется иррегулярным иерархическим законам — по крайней мере, в определенном диапазоне масштабов. Во многих трудах, посвященных этой теме, можно встретить упоминание о феномене кластеризации, однако в серьезных теоретических исследованиях ее, как правило, поспешно заметают под ковер, утверждая, что галактики распределены вполне однородно — в масштабе, превышающем некий большой, но неопределенный порог.

Рассматривая ситуацию с менее фундаментальных позиций, можно сказать, что нежелание иметь дело с иррегулярным проистекает из отсутствия инструментов для его математического описания. От статистики требуется выбрать между двумя допущениями, из которых только одно можно счесть тщательно исследованным (асимптотическую однородность). Стоит ли удивляться, что результаты, мягко говоря, неубедительны?

Вопросы, однако, таковы, что от них трудно отмахнуться. Я считаю совершенно необходимым — параллельно с продолжением попыток объяснить кластеризацию — найти способ описать ее и смоделировать реальность чисто геометрическими средствами. Рассматривая эту тему с фрактальных позиций на протяжении нескольких глав настоящего эссе, мы рассчитываем с помощью недвусмысленных моделей показать, что полученные свидетельства предполагают такую степень кластеризации, которая далеко выходит за пределы, поставленные для нее существующими моделями.

Эту главу следует считать вводной: здесь мы познакомимся с одной весьма влиятельной теорией образования звезд и галактик, предложенной Хойлом, с основной формальной моделью их распределения, которой мы обязаны Фурнье д'Альбу (эта модель также известна как модель Шарлье), и, что самое важное, получим некоторые эмпирические данные. Мы покажем, что и теорию, и данные можно интерпретировать в рамках понятия о масштабно-инвариантной фрактальной пыли. Я настаиваю на том, что распределение галактик и звезд включает в себя некую зону самоподобия, внутри которой фрактальная размерность удовлетворяет неравенству 0 . Кроме того, здесь вкратце изложены теоретические причины, согласно которым можно ожидать D=1 , и, как следствие, обсуждается вопрос, почему наблюдаемая величина D составляет ~1,23 .

Анонс.В главе 22 мы воспользуемся фрактальными инструментами для улучшения нашего понимания смысла космологического принципа, рассмотрим, как его можно и нужно модифицировать, и узнаем, почему такая модификация непременно требует случайности. Обсуждение скоплений в рамках усовершенствованной модели мы отложим до глав 22, 23 и с 32 по 35.

МОЖНО ЛИ ГОВОРИТЬ О ГЛОБАЛЬНОЙ ПЛОТНОСТИ МАТЕРИИ?

Начнем с тщательного рассмотрения концепции глобальной плотности материи. Как и в случае береговых линий, здесь все, на первый взгляд, выглядит очень простым, однако на деле очень быстро — и весьма интересно — запутывается. Для определения и измерения плотности начинают с массы M(R) , сосредоточенной внутри сферы радиуса R с центром, совпадающим с центром Земли. Так оценивается приблизительная плотность, определяемая как

M(R)/[(4/3)πR 3] .

После этого величину R устремляют к бесконечности, а глобальная плотность определяется как предел, к которому сходится в этом случае приблизительная плотность.

Однако обязательно ли глобальная плотность сходится к положительному и конечному пределу? Если так, то скорость такого схождения оставляет желать лучшего, и это еще мягко сказано. Более того, оцеки предельной плотности, будучи рассмотрены во временной перспектив ведут себя довольно странно. По мере того как увеличивалась глубина наблюдаемой в телескоп Вселенной, приблизительная плотность на удивление систематически уменьшалась. Согласно де Вокулеру [104], уменьшение всегда было ∝R D−3 . Наблюдаемый показатель D мно меньше 3 — в наилучшем приближении D=1,23 .

Де Вокулер выдвинул тезис о том, что поведение величины приблизительной плотности отражает реальность, имея в виду, что M(R)∝R D . Эта формула вызывает в памяти классический результат для шара радиуса R , вложенного в евклидово пространство размерности E , — объем такого шара ∝R E . В главе 6 мы встречались с такой же формуле для кривой Коха, с той лишь разницей, что показателем там была не евклидова размерность E=2 , а дробная фрактальная размерность. А в главе 8 мы получили формулу M(R)∝R D для канторовой пьи на временной оси (здесь E=1 ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x