Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Формальная размерность может дрейфовать не только в сторону значения D=2 , но и прочь от него. Например, k этапов построения заполняющего плоскость дерева могут завершиться этапами с размерностью D<2 . Результат такого построения бывает полезен при моделировании определенных речных бассейнов, которые в масштабах, превышающих внутренний порог η , выглядят как заполняющие плоскость, но в областях меньшего масштаба орошают почву не столь эффективно. Значение η очень велико в пустынях и очень мало (вплоть до 0) во влажных джунглях. Эффективная размерность таких рек составит D=2 для масштабов, больших η , и D<2 для масштабов, меньших η .>

КРИВЫЕ ПОЛОЖИТЕЛЬНОЙ ПЛОЩАДИ

Так как наше интуитивное представление о пылевидных множествах весьма несовершенно, нас мало беспокоит пыль положительной длины или объема. А вот кривую, площадь которой отлична от нуля, проглотить уже значительно сложнее. Поэтому после того, как Лебег [294] и Осгуд [458] убедили всех в том, что глотать все равно придется, эти кривые сменили кривую Пеано на посту самого чудовищного чудовища. После описания соответствующего примера я покажу, что действительность не так страшна, как идея: поверхности положительного объема оказываются, в самом буквальном смысле, близки сердцу любого человека.

А идея заключается в обобщении построения со срединным смещением, приведенного на рис. 71. Мы оставляем неизменными бухты и полуострова, каждый из которых представляет собой треугольник, вдающийся в треугольник болота, причем середина основания полуострова совпадает с серединой основания болотного треугольника. Новизна состоит в том, что относительные ширины λ k бухт и полуостровов больше не являются постоянными, но стремятся к нулю при увеличении k таким образом, что ∏ 0 ∞(1−λ k)>0 . При таком построении площадь болота не стремится к нулю и, следовательно, предельное болото имеет размерность D=2 . С другой стороны, болото оказывается совершенно отличным от любого стандартного множества с размерностью 2. Оно не только не имеет внутренних точек, но и является кривой с D T =1 , поскольку окрестность любой точки может быть отделена от остального множества удалением всего двух точек.

Идею приведенного выше построения мы позаимствовали у Осгуда [458], несколько упростив его причудливую манеру упрощения сложных надуманных конструкций. Однако не дóлжно судить о ценности научного открытия, исходя из причин его совершения.

ГЕОМЕТРИЯ АРТЕРИЙ И ВЕН

Позволяю себе процитировать Гарвея (1628 г., [201]): «Движение крови может быть названо круговым в том смысле, в каком Аристотель утверждает, что воздух и дождь воспроизводят круговое движение высших тел…. Подобно этому и в живом теле, благодаря движению крови… различные его части питает, лелеет и оживляет более теплая, совершенная, насыщенная, живая и питательная кровь, которая затем, после соприкосновения с упомянутыми частями, становится холодной, сгущенной и, так сказать, ослабленной».

Гарвей пытался донести до современников идею кровообращения, согласно которой почти в каждой точке тела можно найти на малом расстоянии друг от друга и артерию, и вену. (Загляните также и в «Венецианского купца» Шекспира.) В этой идее не нашлось места для капилляров, однако в первом приближении мы вполне можем потребовать, чтобы и артерия, и вена были расположены бесконечно близко от любой точки тела, - исключая, разумеется, точки, находящиеся внутри артерии (вены), которые не могут быть очень близко к вене (артерии).

Сформулируем это иначе (только в такой формулировке результат выглядит еще более странно!): каждая точка ткани, не относящейся к системе кровообращения, должна лежать на границе между двумя кровеносными системами.

Еще одно конструкторское ограничение заключается в том, что кровь нужно экономить. Отсюда полный объем артерий и вен должен составлять лишь малый процент от объема тела, оставляя бóльшую часть пространства тканям.

ЧУДОВИЩА ЛЕБЕГА – ОСГУДА ВНУТРИ НАС

С точки зрения евклидовой геометрии, наши критерии представляют собой изысканную аномалию. Искомая фигура должна быть топологически двумерной, так как она образует границу, общую для двух топологически трехмерных фигур, причем требуется, чтобы ее объем был одновременно не только пренебрежимо мал по сравнению с объемами фигур, которые она ограничивает, но и гораздо больше этих объемов!

Одно из достоинств фрактального подхода к анатомии заключается в демонстрации того, что вышеуказанные требования прекрасно сочетаются друг с другом. Всем требованиям, которые нам вздумалось наложить на конструкцию системы кровообращения, вполне отвечает пространственный вариант построения Осгуда, описанный в одном из предыдущих разделов.

Вены и артерии в нашей конструкции являются стандартными трехмерными областями, поскольку в них должны целиком умещаться сферы малого радиуса (кровяные шарики). С другой стороны, сосуды занимают очень небольшую долю от общего объема тела. Ткань – другое дело; в ней нет ни одного участка, сколь угодно малого, который не был бы пересечен и артерией, и веной. Ткань представляет собой фрактальную поверхность: ее топологическая размерность 2, а фрактальная размерность 3.

В таком виде вышеприведенные критерии теряют всю свою экстравагантность. И кому теперь интересно, что их появление связано с попыткой надуманного математического бегства от здравого смысла. Они оказались неизбежными и с точки зрения этого самого здравого смысла. Более того, фрактальные чудовища Лебега – Осгуда составляют самую сущность нашей плоти!

ОБ ИНТУИЦИИ И ЗДРАВОМ СМЫСЛЕ

Совместное расположение дыхательных путей и кровеносной системы в легком также представляет собой весьма интересную конструкцию, в которой общую границу имеют уже три множества – артерии, вены и бронхиолы. Первым примером такого множества мы обязаны Брауэру. Рассматривая конструкцию Брауэра с учетом приведенных выше соображений, мы не найдем абсолютно никаких противоречий со здравым смыслом. Однако для оценки ее в исторической перспективе нам следует еще раз обратиться к нашему красноречивому поборнику интуитивного знания и общепринятых воззрений, Гансу Хану.

«Мы интуитивно знаем, что три области могут граничить между собой только в отдельных точках… Мы не в состоянии интуитивно постичь построение Брауэра, хотя логический анализ требует от нас его принятия. В очередной раз [обнаруживается], что даже в простых и элементарных вопросах геометрии совершенно нельзя полагаться на здравый смысл. Невозможно использовать [его] в качестве отправной точки или фундамента математической дисциплины. Пространство геометрии представляет собой … целиком логическое построение…

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x