Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

ПОНЯТИЕ РЕПЕЛЛЕРА

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой A , а отталкивающий – буквой R . Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы A и R поменяются местами. В этой главе такие обмены играют центральную роль.

ФРАКТАЛЬНЫЕ АТТРАКТОРЫ. «ХАОС»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, Δt=1 .

Аттрактор-пыль. Коэффициент Фейгенбаума α .Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли C : N=2 , R<1/2 , охватываемый интервал [ −r/(1−r),r/(1−r) ]. Такое множество C является пределом множества C n , определяемого как множество точек вида ±r±r 2 ±...±r n . При n→n+1 , каждая точка множества C n разделяется на две, а множество C представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор A λ отображения x→λx(1−x) при вещественных λ аналогичен множеству C n , но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума 1/α~0,3995 (см. [144]). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль A с размерностью D~0,538 .

«Хаос».Ни одна точка множества A за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья.Расположив множество A λ в плоскости (x,λ) , получим дерево. Поскольку δ=4,6692≠α , это дерево асимптотически самоаффинно с остатком.

Комментарий.В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

САМОИНВЕРСНЫЕ АТТРАКТОРЫ

Согласно главе 18, множества в цепях Пуанкаре является как наименьшими самоинверсными, так и предельными множествами. Переформулируем последнее свойство: при произвольно выбранной начальной точке P 0 ее преобразования под действием последовательности инверсий подходят произвольно близко к каждой точке множества . Предположим теперь, что эта последовательность инверсий выбирается посредством отдельного процесса, независимого от настоящего и предыдущего положений точки P . При довольно широком разбросе начальных условий всегда можно ожидать (и часто эти ожидания оправдываются), что результирующие последовательности положений P будут притягиваться множеством . Таким образом, огромное количество публикаций по группам, порождаемым инверсиями, можно интерпретировать в терминах динамических систем.

ОБРАЩЕНИЕ «ВРЕМЕНИ»

Дальнейшие поиски систем с интересными фрактальными аттракторами привели меня к системам, аттракторы которых геометрически стандартны, а вот репеллеры оказываются весьма занятными. Эти два множества легко можно поменять местами, тем самым пустив время вспять, при условии, что операции динамической системы допускают существование обратных операций (орбиты не сливаются и не пересекаются), так что, зная положение точки σ(t) , можно определить все σ(t') при t' . Однако данные конкретной системы, которые мы хотим обратить во времени, представляют собой особый случай. Их орбиты похожи на реки: в направлении вниз по склону их путь однозначно определен, вверх же по склону – каждая развилка требует особого решения.

Попытаемся, например, обратить V - преобразование f(x) , с помощью которого мы получили канторову пыль в главе 19. При x>1,5 определены две различные обратные функции, и можно, пожалуй, условиться преобразовывать все x>1,5 в x=1/2 . Аналогичным образом, две различные обратные функции имеет отображение x→λx(1−x) . В обоих случаях осмысленная инверсия предполагает выбор между двумя функциями. В других примерах возможных вариантов больше. Напомню: нам нужно, чтобы выбор между ними осуществлялся посредством отдельного процесса. Эти соображения приводят нас к обобщенным динамическим системам, которые и будут описаны в следующем разделе.

РАЗЛОЖИМЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ [398]

Потребуем, чтобы одна из координат состояния σ(t) (назовем ее определяющим индексом и обозначим через σ f (t) ) эволюционировала независимо от состояния остальных E−1 координат (обозначим это состояние через σ * (t) ), при условии, что преобразование из состояния σ * (t) в состояние σ * (t+1) будет определяться как состояние σ * (t) , так и индексом σ f (t) . В тех примерах, которые я изучил наиболее подробно, конкретное преобразование σ * (t)→σ * (t+1) выбирается из конечного набора, включающего в себя G различных возможностей T g , причем выбирается в соответствие со значением некоторой целочисленной функции g(t)=γ[σ f(t)] . Иными словами, я рассматривал динамику произведения σ * - пространства на некоторое конечное индексное множество.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x