Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
СЛУЧАЙНОСТЬ / ПСЕВДОСЛУЧАЙНОСТЬ
Многие случайные фракталы строятся по точно такой же схеме: интерпретирующий контроллер + процессор. Этот факт часто оказывается неочевиден (иногда с целью создания впечатления большей сложности), однако в рассматриваемых нами прецедентах, определяемых явной рекурсией, он прямо-таки бросается в глаза.
Простейший контроллер называется «последовательность бросков симметричной монеты», однако я никогда его не использовал. Современное компьютерное изобилие предоставляет в наше распоряжение другой контроллер – «генератор случайных чисел». На его вход подается так называемая затравка – некоторое целое число с заданным количеством двоичных знаков M . (Значение M определяется спецификой используемого оборудования; если ввести меньше, чем M знаков, то вакантные места заполняются слева нулями.) На выходе контроллера мы получаем некую последовательность из нулей и единиц. При моделировании игры Бернулли каждый знак выступает в роли результата броска симметричной монеты. А игра, состоящая из 1 000 бросков монеты, представляет собой в действительности последовательность из 1 000 отдельных псевдослучайных знаков.
Можно, однако, предположить, что где-то существует большая книга из 2 1000 страниц, в которой записаны все возможные результаты игры из 1 000 бросков, причем каждый результат на отдельной странице. Таким образом, становится возможным указать любую конкретную игру, просто выбрав соответствующую страницу из этой книги. Параметром случайности в этом случае является номер страницы, т.е. затравка.
Вообще говоря, число на выходе контроллера часто разбивается на цепочки, состоящие из A целых чисел. Поставив перед каждой такой цепочкой десятичную запятую, получим набор дробей U , каждая из которых называется «случайной величиной, равномерно распределенной в интервале от 0 до 1.
На выходе генератора реального случайного множества получается не единичная функция или фигура, но этакий «большой портфель» из 2 A страниц, каждая из которых посвящена отдельной фигуре. Номер страницы и здесь выступает в роли затравки.
Затравки одного вида, как и одинаковые семена, порождают схожие структуры. Разумеется, среди семян попадаются и дефектные, прорастающие в весьма нетипичные растения, однако мы вполне можем ожидать, что подавляющее большинство растений, полученных из семян одного вида, окажутся похожими в главном, допуская при этом некоторые различия в деталях.
Генератор случайных чисел – поворотный момент в любом моделировании. До него выполняются одинаковые для всех случаев операции, связанные с наведением мостов между теорией чисел и теорией вероятности и никак не зависящие от конкретной программы. Эти операции представляет собой типичные образчики детерминированных преобразований, имитирующих случайность согласно предписаниям теории вероятности. После генерации случайных чисел следуют специфичные для каждого случая шаги, соответствующие целям и задачам данного конкретного моделирования.
Вполне естественным представляется переход от вышеописанных практических материй к полноценной рекурсивной вероятности. Главная перемена при этом заключается в замене дробей с конечным числом знаков вещественными числами. В роли затравок теперь выступают какие-то таинственные «элементарные события», которые в математике вероятности обозначаются буквой ω . Для «интерпретации» ω в виде бесконечной последовательности Пейли и Винер [461] предлагают использовать обратную канторову диагонализацию.
ТЩЕТНОЕ ВЗЫВАНИЕ К СЛУЧАЙНОСТИ И ДЕЙСТВИТЕЛЬНОЕ ОПИСАНИЕ
Из предыдущего раздела можно сделать вывод, что теория случайности не так уж и сложна. К сожалению, она и не так проста. Может даже закрасться мысль о том, что для построения модели береговых линий, свободной от недостатков, присущих кривой Коха, но сохраняющей ее достоинства, достаточно случайным образом деформировать различные участки кривой и изменить их размеры, а затем вновь сцепить их вместе в случайном порядке.
Подобное взывание к случайности позволительно разве что в предварительных исследованиях, каковым позволением мы вволю попользовались в некоторых ранних главах настоящего эссе. Это не порок, если конечно, сам факт такого взывания ясно осознается автором и не скрывается от читателя. В некоторых случаях оно даже может быть реализовано при моделировании. В других же случаях одно лишь искусственное насаждение случайности есть не более чем пустой жест. Безусловно, описание правил, которые порождают приемлемые случайные кривые, представляет собой очень нелегкую задачу, так как геометрические множества всегда вложены в пространство. Одним лишь случайным изменением форм, размеров и порядка участков береговой линии можно добиться только получения бесполезного набора элементов, которые никакими стараниями не удастся увязать в цельную картину.
НЕОГРАНИЧЕННАЯ И САМООГРАНИЧЕННАЯ СЛУЧАЙНОСТЬ
Итак, мы с вами обнаружили неформальный отличительный признак огромный практической значимости. Иногда наш контроллер, управляющий действиями процессора, волен запускать новые циклы, не утруждая себя проверкой результатов предыдущих циклов и не опасаясь при этом какого бы то ни было рассогласования. Можно сказать, что такие модели имеют дело с неограниченной формой случайности. В других моделях поздние этапы построения, так или иначе, ограничены результатами предыдущих этапов и/или/ случайность самоограничена геометрией пространства.
Поясним это различие на примерах. Возьмем такую несложную задачу из комбинаторики, как построение на плоской решетке некоторого количества 2n - угольников с возможностью самопересечений. Генерацию таких многоугольников вполне можно поручить модели с ничем не ограниченной случайностью. Однако береговые линии самопересекаться не могут, и подсчет количества полигональных аппроксимаций береговой линии представляет собой задачу с сильно самоограниченной случайностью – задачу, решение которой до сих пор успешно ускользает и от лучших умов.
Так как задачи, связанные с самоограниченной случайностью, весьма сложны, в настоящем эссе они почти не затронуты (исключение составляет глава 36).
ГИПЕРБОЛИЧЕСКИЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
Неравномерная случайная величина X представляет собой всего лишь значение монотонной неубывающей функции x=F −1 (u) . Обратная функция U=F(x) называется вероятностью Pr(X . (Что касается разрывов в функциях F(x) и F −1 (u) , то они требуют очень тщательно продуманных формулировок.)
Читать дальшеИнтервал:
Закладка: