Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Условное распределение вероятностей, напротив, проводит четкие границы между фракталами с разными фрактальными размерностями, между масштабно-инвариантными и масштабно-неинвариантными фракталами, а также между разными прочими допущениями.
НЕСТАНДАРТНЫЕ «ПРЕНЕБРЕЖИМЫЕ СОБЫТИЯ»
Нестандартный случай δ=0 ставит физика лицом к лицу с двумя событиями. Одним из них, почти неизбежным, можно пренебречь; другим же, почти невероятным, не просто нельзя пренебречь – его следует тщательно проанализировать на предмет наличия более мелких подсобытий.
Это противопоставление с точностью до наоборот повторяет то, к какому мы все привыкли в нашей повседневной жизни. Среднее число выпадений орла в очень длинной серии бросков симметричной монеты может и не сходиться к половине от общего числа бросков, однако вероятность такой необходимости очень близка к нулю и поэтому совершенно нас не занимает. Если какой-либо вывод статистической механики (например, принцип увеличения энтропии) почти наверное справедлив, то вероятность того, что произойдет нечто противоположное, приближается к нулю, и поэтому ею можно пренебречь. Очевидно, что под тем, что следует после «поэтому» в двух предыдущих предложениях, подразумевается нечто полностью противоположное тому, что намерен предпринять в космографии я.
ВО ИЗБЕЖАНИЕ СТРАТИФИКАЦИИ
Следующая форма симметрии касается преобразования подобия. В том случае, когда элементы неслучайного фрактала на каждом этапе его построения уменьшаются в r раз, допустимые коэффициенты подобия имею вид r k . Если же значение r на каждом этапе меняется (r 1 ,r 2 ,...) , выбор допустимых общих коэффициентов подобия оказывается более широк, однако до полной свободы этому выбору еще очень далеко.
Иными словами, неслучайные фракталы являют собой воплощение понятия сильно иерархической структуры; подобные множества я предпочитаю обозначать термином сильно стратифицированные. Некоторые из стратифицированных моделей по душе физикам, поскольку такие модели очень удобны в смысле вычислений. С точки же зрения философии это свойство представляется весьма неприятным; что же касается галактик, то нет никаких прямых свидетельств, подтверждающих существование таких стратифицированных скоплений. Вот почему повсюду слышатся призывы (особенно в [104]) к «распространению идей Шарлье на квазинепрерывные модели флуктуаций плотности с целью разработать замену для чрезмерно упрощенной оригинальной дискретной иерархической модели».
Это пожелание невозможно удовлетворить с помощью неслучайных фракталов, а вот случайным фракталам оно вполне по силам, что я и намерен продемонстрировать.
НЕСТРАТИФИЦИРОВАННЫЕ УСЛОВНО-КОСМОГРАФИЧЕСКИЕ ФРАКТАЛЬНЫЕ МИРЫ
Как я уже указывал, астрономы вряд ли стали бы a priori возражать против идеи условности, и будь за ней признаны хоть какие-нибудь достойные внимания следствия, идея эта вскоре превратилась бы в банальность и общее место. Я берусь доказать, что идея условности представляет собой не просто формальное уточнение принципа, а его подлинное обобщение – именно с этой целью я столь подробно описываю в главах с 32 по 35 некие конструкции, обладающие следующими свойствами:
· Они индуцируют нулевую глобальную плотность.
· Они удовлетворяют условному статистическому космографическому принципу.
· Они не удовлетворяют никакой другой форме космографического принципа.
· Они масштабно - инвариантны при любом значении r .
· По своей конструкции они не являются стратифицированными, однако индуцируют кажущуюся иерархическую структуру как следствие размерности D<2 .
· Наконец, они согласуются с количественными данными.
Всеми этими свойствами, кроме последнего, обладает любая из моих моделей. Что касается количественного согласования, то при продвижении от главы 32 к главе 35 оно демонстрирует несомненную тенденцию к улучшению. Таким образом, стоит лишь расположить мои модели наиболее естественным образом, т.е. в порядке возрастания их сложности, и мы получим ряд со все более точным согласованием с наилучшими из имеющихся анализов экспериментальных данных.
АНОНС
Поприветствовав таким образом прекраснейшие виды, открываемые нашему изумленному взору совершенно рандомизированными фракталами, мы сдержим наш порыв и не устремимся немедленно к созерцанию этих моделей, поскольку они встретят нас кое-какими математическими сложностями, к которым мы еще не готовы. В процессе подготовки неплохо было бы просмотреть главы с 23 по 30, в которых я обещаю держаться вблизи сравнительно знакомых нам вероятностных берегов.
VIII СТРАТИФИЦИРОВАННЫЕ СЛУЧАЙНЫЕ ФРАКТАЛЫ
23 СЛУЧАЙНЫЙ ТВОРОГ: КОНТАКТНЫЕ КЛАСТЕРЫ И ФРАКТАЛЬНАЯ ПЕРКОЛЯЦИЯ
В этой группе глав мы поговорим о том, как с помощью различных, порой до смешного простых, приемов можно получить весьма эффективные случайные фракталы. Предметом главы 23 является рандомизация створаживания – процедура, используемая для приблизительного построения канторовой модели шума (см. главу 8), модели распределения галактик на основе пространственной канторовой пыли (см. главу 9), модели турбулентной перемежаемости (см. главу 10) и т.п. Глава 24 посвящена в основном представлению моих сквиг-кривых – нового рандомизированного варианта кривой Коха. В главе 25 мы коснемся броуновского движения, а в главе 26 определим другие фракталы со «случайным срединным смещением»
Вынесенный в заголовок этой группы глав термин «стратифицированный» (иначе – расслоенный, от латинского strata «слой») означает, что во всех рассматриваемых прецедентах мы будем иметь дело с фракталами, построенными посредством наложения друг на друга слоев, причем каждый из последующих слоев дает более мелкие по сравнению с предыдущим детали. Во многих случаях слои располагаются в иерархической последовательности. Вообще говоря, до сих пор мы изучали исключительно стратифицированные фракталы, пусть никто об этом прямо и не говорил. Однако в последующих главах мы убедимся в том, что случайные фракталы отнюдь не обязаны быть стратифицированными.
Фракталы в данной главе строятся на сетке или решетке, составленной из интервалов, квадратов или кубов, каждый из которых делится на b E подынтервалов, подквадратов или подкубов ( b - решеточная база).
Читать дальшеИнтервал:
Закладка: