Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
СТВОРАЖИВАНИЕ ГАЛАКТИК ПО ХОЙЛУ
У ограниченного створаживания имеется пространственный аналог, который можно использовать при геометрической реализации творожной модели распределения галактик, предложенный Хойлом (см. рис. 310 и 311).
Рис. 310 и 311. Реализация модели Хойла (размерность D=1 ) с использованием случайного створаживания на решетке
Основой модели Хойла (см. главу 9) является газовое облако очень низкой плотности, которое в результате последовательных сжатий образует скопление галактик, затем собственно галактики и т.д. Однако описание Хойла страдает чрезвычайной схематичностью, поэтому реальное геометрическое воплощение его модели требует некоторых специальных допущений. На рисунках показаны проекции простейшего такого воплощения на плоскость.
Рис. 311.В качестве инициатора выступает куб со стороной 1, который на первом этапе каскада разделяется на 5 3 =125 подкубов со стороной 5 −1 ; далее процедура повторяется, и на k - м этапе мы получаем уже 125 k подкубов k - го порядка, длина стороны каждого из которых равна 5 −k , и при этом содержащееся в любом из подкубов (k−1) - го порядка вещество, сжимаясь, образует набор из 5 подкубов k - го порядка, который мы будем называть k - предтворогом. Створаживание по Хойлу всегда понижает размерность D с 3 до 1.
На этом рисунке вы можете видеть первые три этапа каскада, совмещенные друг с другом, причем более темный оттенок серого символизирует бóльшую плотность газа. В сравнении с рисунком, приведенным в [230] (с. 286), наша картинка может показаться приближенной. Это не так: рисунок выполнен с очень тщательным соблюдением масштаба, поскольку вопросы, связанные с размерностью, требуют точности.
Ввиду того, что мы представляем здесь плоскую проекцию трехмерного творога, нередко случается так, что два куба проецируются в один квадрат. Однако в пределе совпадения проекций двух точек практически исключены. Образующаяся пыль настолько разрежена, что пространство, в сущности, остается прозрачным.
Рис. 310.Здесь показан только четвертый этап каскада (с другой затравкой). Лежащая в основе построения решетка практически не прослеживается, и это хорошо, поскольку в природе мы никаких решеток не наблюдаем (см. главу 27). Верхний участок вихря, обрезанный краем страницы, в настоящем примере пуст.
Регулирование лакунарности.Понятие лакунарности, представленное в главе 34, непосредственно применимо к створаживанию на прямой и к створаживанию по Хойлу. Если у Хойла заменить N=5 «реальным» значением Фурнье N=10 22 (см. рис. 141), то лакунарность случайного творога становится очень и очень малой.
СТВОРАЖИВАНИЕ В МОДЕЛИ ТУРБУЛЕНТНОГО РАССЕЯНИЯ НОВИКОВА – СТЮАРТА
Пространственное случайное створаживание можно наблюдать и в одной очень ранней модели перемежаемости турбулентности. Новиков и Стюарт [451] предполагают, что пространственное распределение рассеяния генерируется каскадным процессом: в начале каждого этапа берется предтворог предыдущего этапа и створаживается дальше, давая в результате N меньших в r раз частей. См. рис. 312 – 315.
Эта модель очень приблизительна, она даже грубее модели, предложенной в [21] для описания определенных избыточных шумов (см. главы 8 и 31). Она почти не привлекла к себе сколько-нибудь благосклонного внимания, ее никто не исследовал и не разрабатывал. Однако такое пренебрежительное отношение лишено всяких оснований. Мои исследования показывают, что в створаживании, согласно этой модели, уже присутствовали многие черты, характерные для более совершенных и более сложных современных моделей.
Рис. 312 – 315. Случайный творог Новикова – Стюарта на плоской решетке (размерности от D=1,5936 до D=1,9973 ) и перколяция
Каскад Новикова – Стюарта дает полезное общее представление о том, каким образом турбулентное рассеяние в жидкости приходит в итоге к относительно малому объему. Концептуально он очень похож на каскад Хойла, проиллюстрированный на предыдущих рисунках; Однако между фрактальными размерностями D получаемых в пределе этих каскадов множеств имеется значительное различие. Размерность распределения галактик близка к единице, тогда как в турбулентности D>2 , причем хорошим приближением считается значение в интервале от 2,5 до 2,6. Для более общего понимания процесса створаживания на рисунках представлены примеры с различными размерностями. Во всех примерах r=1/5 , а N принимает следующие значения:
N=5×24, N=5×22, N=5×19, N=5×16 и N=5×13 .
Размерности же, соответственно, равны:
D=1+ ln24 / ln5 =2,9973; D=2,9426, D=2,8505, D=2,7227 и D=2,5936 .
Сыворотка изображается серым цветом, а творог черным или белым. Белая область представляет собой перколяционный контактный кластер, т.е. вы можете, двигаясь только по белому, пройти от нижнего края рисунка до верхнего. Черным цветом представлены все остальные контактные кластеры.
Так как размерность турбулентности больше 2, твороги эти, в сущности, непрозрачны, а на рисунках показаны (в отличие от творогов Хойла) их плоские сечения со следующими размерностями:
D=1,9973, D=1,9426, D=1,8505, D=1,7227 и D=1,5936 .
Правый нижний угол рис. 312 отведен под пример с размерностью D~1,9973 , не представляющий большого интереса, остальная часть рисунка иллюстрирует случай D~1,9426 .
Порождающая программа и затравка одинаковы для всех примеров, и мы можем проследить постепенное исчезновение серых пятен по мере увеличения размерности. Для начала возьмем 25 субвихрей любого вихря и наложим их случайным образом друг на друга. Серыми окажутся 25−N верхних субвихрей, где N=5 D .
В двух примерах с наименьшими размерностями перколяции не происходит. При N=19 на рисунке остается несколько черных пятен и появляется много белых. Некоторые затравки перколируют уже при N=18 . Однако на иллюстрациях показан слишком ранний этап каскада, чтобы можно было делать достоверные оценки порога D крит.
Читать дальшеИнтервал:
Закладка: