Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

С учетом этих результатов не составляет большого труда завершить доказательство приведенных в предыдущем подразделе неравенств: если творог содержит в себе кривую (или поверхность), то любая точка P на этой кривой (поверхности) содержится внутри блока со стороной вида b −β , который кривая (поверхность) пересекает в некоторой точке (или кривой). Можно утверждать, что таких точек (или кривых) почти наверняка не существует при D<���½(E+1) (или при D<���½E+1 ).

ПЕРКОЛЯЦИОННЫЕ ФРАКТАЛЬНЫЕ КЛАСТЕРЫ

Обсуждение топологии лучше всего продолжать в рамках перколяционной терминологии. В соответствии с определением, приведенным в главе 13, мы говорим, что некая фигура внутри квадрата или куба перколирует, если она содержит в себе связную кривую, соединяющие противоположные стороны этого квадрата или куба. Под термином «перколяция» обычно понимают бернуллиеву перколяцию, которую мы рассматривали в главах 13 и 14. Однако аналогичная задача возникает и в контексте случайных фракталов. Ниже мы попытаемся решить эту задачу на примере случайного творога.

Опираться мы будем на фундаментальный факт, заключающийся в том, что если упомянутая фигура представляет собой σ - кластер, то она перколирует в том и только в том случае, если перколирует один из принадлежащих ей контактных кластеров. Когда контактные кластеры фрактальны и их длины подчиняются безмасштабному гиперболическому распределению, вероятность перколяции не зависит от длины стороны квадрата и не вырождается в 0 или 1. В бернуллиевой перколяции упомянутое в предыдущем предложении «когда» сводится к весьма жесткому условию: p=p крит. Перколяция сквозь фрактальный творог довольствуется условием более мягким, а именно: D>D крит. Разница очень значительна. И все же понимание бернуллиевой перколяции помогает понять перколяцию творога, и наоборот.

Верхний предел для D крит .Я утверждаю, что при b≥3 пороговое значение D критудовлетворяет неравенству b Dкрит>b E+½b E−1 . Точнее, при фиксированном N (ограниченное створаживание) выполнение этого условия почти гарантирует перколяцию. При неограниченном створаживании оно означает, что существует некая положительная, но малая вероятность того, что перколяция не произойдет.

Прежде всего рассмотрим случай неслучайного N . При сильном условии b E −N≥½b E−1 −1 любая заданная поверхность, заключенная между двумя ячейками предтворога, всегда выживает. Даже в самой опасной ситуации, когда вокруг упомянутой поверхности скапливаются все не выживающие субвихри, их количества совершенно недостаточно для разрыва существующей тропы (причем не почти наверное, а абсолютно точно). Более слабое условие b E −N≥½b E−1 дает тот же результат, но уже на абсолютно, а лишь почти наверное. Получающийся творог состоит из листов поверхности, окружающих отдельные лакуны, заполненные сывороткой. Две точки сыворотки, расположенные в разных лакунах, нельзя соединить никаким образом. Топология такого творога почти наверняка тождественна топологии ковра Серпинского или фрактальной пены (см. главу 14).

Если применить то же условие к неограниченному створаживанию, то отсутствие перколяции из разряда совершенно невозможных событий перейдет в просто маловероятные.

Рассмотрим некоторые численные примеры на плоскости (E=2) . При b=3 более слабое (и более полезное) из вышеприведенных условий дает неравенство N>7,5 , которое имеет единственное решение: N=8 (равное значению N для ковра Серпинского). По мере того как b→∞ верхний предел для D критподходит все ближе к 2.

Нижний предел для D крит .При b≫1 справедливо неравенство D крит z>E+log b p крит, где p крит- критическая вероятность в бернуллиевой перколяции. Существование этого предела обусловлено тем, что первый этап случайного фрактального створаживания сводится к построению бернуллиевой решетки, каждая ячейка которой является проводящей с вероятностью b D−E . Если эта вероятность меньше p крит, то электропроводность решетки – событие маловероятное. А если такая решетка все-таки проводит ток, то происходит это, скорее всего, благодаря одной-единственной цепочке проводящих ячеек. На втором этапе случайного фрактального створаживания мы строим бернуллиеву решетку с вероятностью b D−E уже в каждой проводящей ячейке решетки первого этапа. И это наверняка разорвет существующую перколяционную цепочку.

При b→∞ новый предел стремится к E и, в своей области применения (b≫1) , превосходит предел ½(E+1) . Таким образом, D крит →E .

исывается в обязательном порядке.

Общие вершины, рассматриваемые первыми, порождают «случайные цепи», которые представляют собой прямое обобщение некоторых кривых Коха или Пеано.

Что касается общих сторон, то от них берет начало гораздо более интересное и привлекательное семейство фракталов, представленное впервые в [393] и [394]. Одни представители этого семейства – «простые» кривые, неветвящиеся и не содержащие самопересечений, другие имеют вид петель и деревьев; кроме того, процесс может порождать и поверхности. Я предлагаю называть такие фигуры сквиг - кривыми и сквиг - поверхностями.

Я отдаю сквиг - кривым предпочтение перед случайными цепями главным образом потому, что их меньшее непостоянство, по всей видимости, отражает некое фундаментальное свойство пространства.

Линейные сквиг – кривые можно считать приближенными моделями линейных полимеров и речных русел, петлеобразными сквиг – кривыми моделируются береговые линии, а древовидными – речные бассейны.

СЛУЧАЙНЫЕ ЦЕПИ И ЦЕПНЫЕ КРИВЫЕ

Совокупность белых областей на рис. 71 можно рассматривать как цепь, составленную из треугольников, соединенных вершинами. Следующий этап построения заменяет каждый треугольник подцепочкой, целиком заключенной внутри него, и дает в результате цепь, составленную из меньших треугольников, снова соединенных вершинами. Такая последовательность вложенных друг в друга цепей сходится в пределе к кривой Коха. (Процедура напоминает построение цепей Пуанкаре в главе 18.)

Подобным образом можно поострить и многие другие кривые Коха – например, салфетку Серпинского (рис. 205); цепью в этом случае послужит фигура, остающаяся после удаления центральных треугольных трем.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x