Владимир Живетин - Системы аэромеханического контроля критических состояний
- Название:Системы аэромеханического контроля критических состояний
- Автор:
- Жанр:
- Издательство:Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-060-0, 978-5-903140-40-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Системы аэромеханического контроля критических состояний краткое содержание
Монография предназначена для специалистов в области контроля и управления самолетом.
Системы аэромеханического контроля критических состояний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
III. Параметры управляемости, обусловленные свойствами ПСАД (качество переходного процесса).
Допустимая величина перерегулирования по перегрузке а 1= maxΔ n y ( t ), t [0, T ], должна удовлетворять следующему неравенству:
a 12≤ a 1≤ a 11,
где а 12 , а 11 – заданные величины из условия прочности и быстродействия.
Время t ср срабатывания автомата по перегрузке, при котором впервые выполняется равенство:
Δ n y = (1 – ε n )(Δ n y ) уст,
где (Δ n y ) уст – приращение перегрузки n у в установившемся движении; ε n > 0, заданная малая величина, должна принадлежать об-ласти допустимых значений Ω доп , удовлетворяя неравенству
( t ср ) 2≤ t ср ≤ ( t ср ) 1,
где ( t ср ) 1, ( t ср ) 2 – заданные величины.
Время t n переходного процесса по перегрузке попадания Δ n y в «трубку» | Δ n y – (Δ n y ) уст | ≤ ε n , где ε n > 0 – заданная величина. На t n налагается ограничение t n ≤ ( t n ) max.
Применение информации о поле сил аэродинамического давления в системах контроля и управления особенно необходимо при полете:
1) на малой высоте, при взлете или посадке в условиях резкой смены направления ветра:
– со встречного на попутный;
– с нисходящих потоков на восходящие;
2) в условиях, когда возможно сваливание с переходом в штопор, например при пространственных маневрах;
3) в условиях пространственного неустановившегося движения высокоманевренных самолетов с целью обеспечения безопасности;
4) в условиях существенного изменения массы и центровки самолета с целью обеспечения оптимального расхода топлива и безопасности полета.
Отметим особенности обеспечения безопасности полета параметров траектории, зависящих от ПСАД. Создавая системы контроля, человек всегда шел по пути их упрощения. Так, например, с целью предотвращения критических значений поля сил аэродинамического давления на несущих поверхностях он измерял угол отклонения флюгарки и скорость полета с помощью приемника воздушного давления (ПВД), обеспечивая тем самым минимальные затраты на систему контроля.
Все это было возможно на заре авиации. Дело в том, что такие средства контроля, как флюгарик, ПВД измеряют локальный угол атаки и скорость (α*, V* ) вне поля сил аэродинамического давления, т. е. когда х не принадлежит области Ω, в которой действует давление Р, подлежащее контролю, управлению и ограничению. В связи с этим (α* ,V* ) = х Ω( Р ) и отличается от (α ,V ) = y
Ω( P ) на величину Δ x = x – y. При этом у – это истинные значения (α ,V ), а х – измеренные, обладающие методическими погрешностями δ x м . Эти погрешности стремятся к нулю, когда ЛА совершает установившееся горизонтальное движение. Во всех остальных режимах δ x м ≠ 0 и достигает максимальное значение в неустановившемся пространственном движении. Было совершено множество исследований по созданию модели учета возмущающих факторов от поля аэродинамического давления, создаваемого самолетом в пространстве на показания флюгарика и ПВД. Пока эти исследования привели к невозможности учета влияния и компенсации методических ошибок, создаваемых при контроле с помощью ПВД и флюгарика.
Таким образом, ограничение параметров траектории самолета х i (обеспечение безопасности полета) состоит не только в разработке средств контроля х i и управления, но и в учете погрешностей средств контроля, уменьшения их, поскольку уменьшение δ x i обусловливает расширение области допустимых значений х i , т. е. Ω доп ( x i ).
Целесообразность разработки и применения систем аэромеханического контроля широко просматривается в современной авиации:
– контроль над массой и положением центра масс, например, транспортных самолетов;
– контроль над тягой несущего винта вертолета, например, при взлете и посадке в горах; контроль над минимальной скоростью вертолета при посадке;
– обеспечение минимального расхода топлива на различных режимах полета;
– контроль над флаттерным режимом крыла, управление с целью увеличения скорости полета.
1.2.2. Характерное поведение самолета при больших углах атаки
Увеличение тактического преимущества самолета и улучшение его маневренности может быть достигнуто за счет расширения эксплуатационной области углов атаки. Расширение этой области не может быть осуществлено без использования автоматических систем предотвращения сваливания и штопора. В историческом плане сначала появились системы вывода из штопора, однако в связи с необходимостью решения задачи пилотирования вблизи критических режимов стали интенсивно развиваться приемы предотвращения сваливания как в форме применения систем улучшения устойчивости и управляемости, так и в форме предупредительной сенсорной сигнализации (световой, тактильной).
Для самолетов характерным является большое разнообразие естественных признаков предупреждения летчика о подходе к началу сваливания. Это, например, самопроизвольное боковое движение самолета, воспринимаемое летчиком как колебания по крену; самопроизвольные колебания по тангажу; самопроизвольное поперечно-путевое движение, воспринимаемое летчиком как дивергенция рыскания; самопроизвольное внезапное увеличение угла тангажа θ.
При превышении допустимых углов атаки в процессе сваливания возможны несколько режимов дальнейшего движения:
– сваливание – режим полета с большой амплитудой движения по азимуту ψ или по углу атаки α, при которых происходит полная потеря управляемости;
– вращение после сваливания, представляющее собой произвольное движение самолета, когда отсутствует основное установившееся движение рыскания с постепенным уменьшением угла атаки;
– глубокое сваливание, при котором полет становится неуправляемым с большими углами атаки, малыми скоростями вращения (высокая скорость снижения и отсутствие заметных вращательных движений);
– штопор – движение с установившейся скоростью рыскания на больших углах атаки; при этом могут накладываться колебания по тангажу, крену, рысканию.
Характеристики режима штопора оказываются разнообразными для сверхзвукового самолета. Так, у одного и того же самолета они могут быть различными в зависимости от начальных условий ввода, продолжительности штопора, положения рулей элеронов в штопоре и т. д. Таким самолетам присуща большая неравномерность движения и большие колебания в штопоре. Все это значительно усложняет проблему борьбы с тем комплексом явлений, которые предшествуют штопору и его сопровождают, приводит к усложнению систем управления и обеспечения безопасности.
Читать дальшеИнтервал:
Закладка: