Владимир Живетин - Системы аэромеханического контроля критических состояний
- Название:Системы аэромеханического контроля критических состояний
- Автор:
- Жанр:
- Издательство:Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-060-0, 978-5-903140-40-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Системы аэромеханического контроля критических состояний краткое содержание
Монография предназначена для специалистов в области контроля и управления самолетом.
Системы аэромеханического контроля критических состояний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Аналитические модели движения самолета на больших углах атаки могут быть построены с использованием ограниченных данных, полученных при статических испытаниях или при испытаниях методом вынужденных колебаний [22]. Однако эти данные лишь приблизительно отражают истинную картину обтекания самолета на больших углах атаки. Они адекватны истинной модели движения лишь на отдельных этапах полета. Кроме того, аэродинамические характеристики, получаемые различными методами, должны быть соотнесены с отдельными фазами движения самолета. Например, данные статических испытаний в аэродинамических трубах корректны только для этапа установившегося движения при отсутствии вращения, а данные, получаемые методом установившегося вращения, соответствуют только режиму установившегося штопора. Соответственно, при использовании значений аэродинамических коэффициентов, получаемых методом вынужденных колебаний, не учитываются особенности обтекания в статических условиях. Таким образом, основная идея аналитического изучения движения самолета на больших углах атаки сводится к дискретному набору математических моделей, отличающихся как видом используемых уравнений, так и различными значениями аэродинамических коэффициентов, причем каждая из моделей применяется на различных режимах движения самолета от взлета до посадки.
Проблема детального исследования аэродинамических параметров при движении самолета на больших углах атаки является актуальной. Теоретические исследования движения при развившемся колебательном штопоре должны, по-видимому, иметь ограниченный характер из-за чрезвычайной сложности получения и практической недостоверности аэродинамических данных на этом режиме.
Исследование влияния аэродинамических и массовых характеристик на факторы ввода и движения в штопоре представляет собой важный этап построения аналитических моделей движения самолета на больших углах атаки. Имеющиеся данные [22] позволяют привести некоторые результаты влияния этих характеристик на штопор:
– на штопор оказывает значительное влияние эффективность органов поперечного управления, например, отрицательная величина отношения m y δ э / m x δ э способствует развитию плоского штопора;
– влияние величины m β x существенно в том смысле, что для любого распределения массы самолета существует минимальное значение, ниже которого штопор развиться не может;
– значительное инерционное взаимодействие тангажа и рыскания (распределение массы по фюзеляжу) предрасполагает ко входу в плоский штопор;
– для современных самолетов характерным является большое значение конструктивного параметра относительной плотности μ, равное нескольким десяткам, что повышает колебательность самолета в штопоре, вывод из которого в данном случае затруднен;
– оптимальным способом вывода из штопора самолетов современных геометрических форм с равномерным распределением масс по фюзеляжу считается такой, при котором руль направления отклонен против вращения, элероны – по направлению вращения, руль высоты находится в нейтральном положении.
1.3. Поле сил аэродинамического давления как источник критических режимов полета
Проблема обеспечения энергетическо-силового баланса в нестандартном режиме полета связана с обеспечением безопасного полета. Эта проблема обусловлена влиянием на ПСАД: внешней среды, включающей восходящие и нисходящие воздушные потоки; пространственными маневрами, создаваемыми полем сил аэродинамического давления органов управления при их отклонении.
Принципиальное значение имеет взаимосвязь и взаимовлияние аэродинамических и инерционных сил при больших угловых скоростях ω x , ω y , ω z , при контроле и управлении полетом при резком маневрировании. Важная прикладная задача обеспечения безопасности полета включает контроль и ограничение вектора аэродинамической силы R = ( R x ,R y ,R z ), где R x , R y , R z – проекции вектора R на координатные оси; R y = Y; R x = X; R z = Z – соответственно на оси OY, OX, OZ.
Как только мы ограничиваемся вектором R, мы рассматриваем ЛА как материальную точку, что снижает точность обеспечения безопасности полета. Возможен иной подход, когда система с распределенными параметрами в виде несущих поверхностей ЛА, на которые воздействует поле сил перепадов аэродинамического давления p ( x,z,t ), заменяется на систему с квазираспределенными параметрами R = ( R 1 ,R 2 ,R 3 ,R 4 ,R 5), где R 1 , R 2 – вектор аэродинамической силы на левой и правой полуплоскостях; R 3= R э , R 4= R н, R 5= R в – соответственно R от элеронов, руля направления и высоты (рис. 1.9).

Рис. 1.9
В дальнейшем будем выделять следующие характеристики поля сил аэродинамического давления:
– интегральные характеристики ПС АД в виде: аэродинамических сил и моментов ( X, Y, Z, M x , M y , M z ) или соответствующих им коэффициентов аэродинамических сил и моментов ( С x , С y , С z , m x , m y , m z );
– локальные характеристики ПСАД:
( С x ( z j ), С y ( z j ), С z ( z j )), ( m x ( z j ), m y ( z j ), m z ( z j )),
величины которых вычислены в сечениях z j по размаху крыла;
– точечные характеристики ПСАД p ( x i , z j , t ), равные, в частности, перепаду давлений в точках ( x i , z j ) поверхности крыла.
В условиях стационарного движения центр давления и равнодействующая аэродинамическая сила R неизменны, и мы можем использовать это в системах контроля, например, α и V. При этом поле аэродинамических давлений и порожденное им поле аэродинамических сил одинаково и симметрично на полуплоскостях, что позволяет строить системы контроля и управления с использованием материалов продувок и расчетов.
В случаях нестационарных движений, пространственных маневров либо и того, и другого вместе ситуация существенно изменяется. При этом информация от систем контроля становится неадекватной. Так, например, одним и тем же углам атаки в стационарных и нестационарных условиях соответствуют различные R и точки их приложения. В этих условиях в отличие от стационарных необходимо пересматривать не только функциональные соотношения для параметров контроля, но также и области их допустимых значений. Самое главное – одним и тем же отклонениям органов управления соответствуют различные отклонения параметров траектории, так как одному и тому же углу атаки соответствуют различные значения поля аэродинамических давлений и аэродинамических сил.
Читать дальшеИнтервал:
Закладка: