Владимир Живетин - Системы аэромеханического контроля критических состояний
- Название:Системы аэромеханического контроля критических состояний
- Автор:
- Жанр:
- Издательство:Институт проблем риска, ООО Информационно-издательский центр «Бон Анца»
- Год:2010
- Город:Москва
- ISBN:978-5-98664-060-0, 978-5-903140-40-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Владимир Живетин - Системы аэромеханического контроля критических состояний краткое содержание
Монография предназначена для специалистов в области контроля и управления самолетом.
Системы аэромеханического контроля критических состояний - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
II. Предельно допустимые (критические) параметры движения при многомерном управлении (δ э , δ рн ).
Критические области по параметрам пространственного движения:
– продольная устойчивость обусловливает ограничения на m α z ≥ ( m α z ) кр из условия n y ≤ ( n y ) кр ;
– путевая устойчивость m β у ≥ ( m β у ) кр из условия n z ≤ ( n z ) кр ;
– путевая устойчивость m β y ≥ ( m β у ) кр из условия инерционного вращения;
– поперечная устойчивость m β x ≤ ( m β x ) кр .
Аналитические исследования динамики движения самолета при больших углах атаки ведутся по нескольким направлениям, к важнейшим из которых относятся: разработка приближенных критериев для оценки углов атаки начала сваливания; разработка различных мероприятий по улучшению характеристик сваливания и штопора; синтез аналитических моделей движения в штопоре и выявление влияния аэродинамических и массовых характеристик на движение самолета в штопоре.
На рис. 1.14 приведены особенности динамики современных маневренных самолетов на режимах сваливания и штопора.

Рис. 1.14.


Рис. 1.14 (Окончание)
1.4. Критические режимы скоростного самолета
К наиболее характерным критическим режимам относятся: сваливание, штопор, аэроинерционное самовращение, сверхзвуковой срыв, неуправляемое движение крена (реверс элеронов).
Качественная модель процессов
Сваливаниесвязано с выходом на большие, положительные или отрицательные, углы атаки и сопровождается самопроизвольными расходящимися апериодическими или колебательными движениями самолета либо нерасходящимися колебаниями, возрастающими с увеличением угла атаки. Такое движение начинается при углах атаки α* больше α доп – предельно допустимого на 4°–5° (рис. 1.15).

Рис. 1.15
Штопоробычно развивается после сваливания самолета, если при этом возникают значительные моменты тангажа, рыскания или крена. Он сопровождается самопроизвольным сложным пространственным движением (как правило, вращательным) на углах атаки, превышающих α * (рис. 1.15), обусловленным взаимодействием аэродинамических и инерционных сил и моментов.
Аэроинерционное самовращениехарактеризуется возникновением сложного неуправляемого движения самолета относительно трех осей с большой угловой скоростью и значительными ускорениями. При этом резко возрастают углы атаки и скольжения и как следствие нормальные и поперечные перегрузки.
Такой режим возникает тогда, когда ω х превышает (ω x ) доп на 10÷15 % и представляет собой наиболее опасную форму проявления в полете взаимодействия продольного и бокового движений самолета (рис. 1.16).

Рис. 1.16
Сверхзвуковой срывсопровождается неуправляемым пространственным движением самолета, когда интенсивно возрастают угол скольжения, вращение относительно трех осей, ростом нормальной и поперечных перегрузок. Этот режим начинается тогда, когда число Маха ( М ) превышает М доп (рис. 1.8) более чем на 10 %.
Скорость реверса V рэ элеронов – когда достигнута такая скорость, при которой отклонение элеронов не приводит к возникновению момента крена. При скорости полета V > V рэ действие элеронов обратное.
Таким образом, при построении областей опасных и безопасных состояний самолета необходимо выделять различные режимы движения:
– стационарные;
– квазистационарные;
– динамические (плоские и пространственные).
Приведенные режимы характерны соответствующим этапам эволюции авиационной техники от простейших до современных истребителей.
Системы контроля, согласно законам эволюции, над конструкций и двигателей также должны эволюционировать от простейших, когда обеспечивался контроль параметров самолета как материальной точки, до современных.
Аэродинамическое взаимодействие. Проблемы контроля
Рассмотрим функциональную зависимость C y (·). Отметим, что поле аэродинамических сил и моментов формируется и создается полем аэродинамического давления р (·). Во всех случаях ограничению подлежит C y . Это обусловлено тем, что β, ω x , M и т. д. из-меняют не α, а C y . При этом важно, какова величина C y ( z ). Зная эти величины, мы можем вычислять и прогнозировать как сваливание, так и аэродинамическое самовращение. Во всех случаях не α, а C y характеризует чрезмерное падение подъемной силы Y или его возрастание. Последнее обусловлено не только углом атак α, но и β, а также .
Угол атаки может характеризовать состояние ПСАД только в плоском установившемся режиме полета, когда отсутствуют углы скольжения β, угловые скорости .
ПСАД на околокритических и закритических углах атаки
В зависимости от вида кривой C у = f (α) сочетания величин угла атаки центрального сечения крыла, угловой скорости его вращения ПСАД обусловливает следующие виды движения:
– самовращение крыла;
– отсутствие вращения крыла при результирующем аэродинамическом моменте крена, равном нулю;
– аэродинамическое демпфирование крена.
В режиме самовращения стреловидного крыла на сравнительно небольших закритических углах атаки при малом скольжении угловая скорость самовращения такого крыла может периодически изменяться с возможными изменениями направления движения. Все сказанное характеризует ПСАД как динамическую систему, описание состояния которой представляет собой самостоятельную проблему, решение которой крайне необходимо для:
– прогнозирования критических режимов полета;
– формирования управляющих воздействий по предотвращению критических режимов и вывода в область допустимых состояний;
– построения областей допустимых и критических состояний ЛА и его ПСАД.
Рассмотрим особенности ПСАД, сопутствующие возникновению сваливания самолета. В случае, когда ω x ≠ 0 углы атаки α на опускающейся половине крыла будут увеличиваться, а на другой – уменьшаться. Там, где α увеличивается, создаются условия для интенсивного развития местной области срыва потока, когда местный угол атаки α м достигает критического значения α кр .
Читать дальшеИнтервал:
Закладка: