Ричард Фейнман - Том 2. Электромагнетизм и материя

Тут можно читать онлайн Ричард Фейнман - Том 2. Электромагнетизм и материя - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-phys. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Том 2. Электромагнетизм и материя
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Ричард Фейнман - Том 2. Электромагнетизм и материя краткое содержание

Том 2. Электромагнетизм и материя - описание и краткое содержание, автор Ричард Фейнман, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Повторить : гл. 12 (вып. 1) «Характеристики силы»

Том 2. Электромагнетизм и материя - читать онлайн бесплатно полную версию (весь текст целиком)

Том 2. Электромагнетизм и материя - читать книгу онлайн бесплатно, автор Ричард Фейнман
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 2210 Сумма токов входящих в любой узел равна нулю Горизонтальная - фото 1264

Фиг, 22.10. Сумма токов, входящих в любой узел, равна нулю .

Горизонтальная линия, соединяющая выводы а, b, с и d , нарисована для того, чтобы показать, что эти выводы все связаны между собой или что они соединяются проводами с ничтожным сопротивлением. Во всяком случае такой чертеж означает, что все выводы а, b, с, d находятся под одним потенциалом, а выводы е, f, g и h — тоже под одним. Тогда падение напряжения V на любом из четырех элементов одинаковое.

Но одна из наших идеализации состояла в том, что на выводах импедансов сосредоточиваются пренебрежимо малые количества электричества. Предположим теперь, что и электрическим зарядом, накапливаемым на соединительных проводах, тоже можно пренебречь. Тогда сохранение заряда требует, чтобы любой заряд, покинувший один из элементов цепи, немедленно входил в какой-либо другой элемент цепи. Или, что то же самое, чтобы алгебраическая сумма токов, входящих в любую из точек соединения, была равна нулю. Под точкой соединения мы понимаем любую совокупность выводов, таких, как а, b , с, d , которые соединены друг с другом. Такая совокупность соединенных между собой выводов обычно называется «узлом». Сохранение заряда, стало быть, требует, чтобы в цепи, показанной на фиг. 22.10, было

2215 Сумма токов входящих в узел состоящий из четырех выводов е f g h - фото 1265(22.15)

Сумма токов, входящих в узел, состоящий из четырех выводов е, f, g, h , тоже должна быть равна нулю:

2216 Ясно что это то же самое уравнение что и 2215 Оба эти уравнения - фото 1266(22.16)

Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что сумма токов, втекающих в любой узел, обязана быть равна нулю :

2217 Наше прежнее заключение о том что сумма падений напряжений вдоль - фото 1267(22.17)

Наше прежнее заключение о том, что сумма падений напряжений вдоль замкнутого контура равна нулю, должно выполняться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием правил Кирхгофа . С их помощью можно найти силы токов и напряжения в какой угодно цепи.

Рассмотрим, например, цепь посложнее (фиг. 22.11).

Фиг 2211 Анализ цепи с помощью правил Кирхгофа Как определить токи и - фото 1268

Фиг. 22.11. Анализ цепи с помощью правил Кирхгофа.

Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы а, b, е, d и обратно к а.) Для каждого замкнутого контура напишем уравнение первого правила Кирхгофа — сумма падений напряжения вдоль всякого контура равна нулю. Нужно помнить, что падение напряжения считается положительным, если направление обхода совпадает с направлением тока, и отрицательным, если направление обхода противоположно направлению тока; и надо еще помнить, что падение напряжения на генераторе равно отрицательному значению э.д.с. в этом направлении. Так что для контура abeda получается

Прилагая те же правила к остальным контурам получим еще три сходных уравнения - фото 1269

Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.

После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b, получаем

Аналогично в узле е уравнение для токов принимает вид В изображенной схеме - фото 1270

Аналогично, в узле е уравнение для токов принимает вид

В изображенной схеме таких уравнений для токов пять Оказывается однако что - фото 1271

В изображенной схеме таких уравнений для токов пять. Оказывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых линейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).

Мы видели, что одно из уравнений для тока зависит от остальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рассматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь abcfeda . Или сделать обход по пути abcfehgda . Вы видите, что контуров — множество. И, анализируя сложные схемы, ничего не стоит получить слишком много уравнений. Но хоть есть правила, которые подсказывают, как надо поступать, чтобы вышло наименьшее количество уравнений, обычно и так бывает сразу понятно, как выписать нужное число простейших уравнений. Кроме того, одно-два лишних уравнения вреда не приносят. К неверному ответу они не приведут, разве только немного запутают выкладки.

В гл. 25 (вып. 2) мы показали, что, если два импеданса zz 2соединены последовательно , они эквивалентны одиночному импедансу z s, равному

2218 Кроме того было показано что когда два импеданса соединены - фото 1272(22.18)

Кроме того, было показано, что, когда два импеданса соединены параллельно , они эквивалентны одиночному импедансу z p, равному

2219 Если вы теперь оглянетесь назад то увидите что выводя эти - фото 1273(22.19)

Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирхгофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов. Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12.

Фиг 2212 Цепь которую можно проанализировать с помощью последовательных и - фото 1274

Фиг. 22.12. Цепь, которую можно проанализировать с помощью последовательных и параллельных комбинаций.

Импедансы z 4и z 5можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z 6и z 7. Затем импеданс z 2можно скомбинировать с параллельным эквивалентом z 6и z 7по правилу последовательного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом Z . И тогда ток через генератор просто равен ℰ/ Z . А действуя в обратном порядке, можно найти токи в каждом импедансе.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Ричард Фейнман читать все книги автора по порядку

Ричард Фейнман - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Том 2. Электромагнетизм и материя отзывы


Отзывы читателей о книге Том 2. Электромагнетизм и материя, автор: Ричард Фейнман. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x