Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На рис. 7 в статье [397] представлена еще одна фрактальная пыль (из тех же, кстати, предварительных результатов с неполными ярлыками), при построении которой использовался другой набор из f трем.
XI РАЗНОЕ
36 ФРАКТАЛЬНАЯ ЛОГИКА В СТАТИСТИЧЕСКОЙ РЕШЕТОЧНОЙ ФИЗИКЕ
С фрактальной точки зрения, большинство задач физики не имеет сколько-нибудь принципиальных отличий от тех задач, что ставят перед собой другие научные дисциплины. Именно поэтому в настоящем эссе повсюду встречаются всевозможные «прецеденты» из физики, и лишь немногие мы приберегли для отдельного рассмотрения в этой главе.
Возможно, однако, что кто-то начнет читать книгу именно с этой главы, так как только в ее названии имеется слово «физика». Такому читателю я порекомендовал бы заглянуть в указатель, но сначала обратил бы его внимание на перечисленные ниже пространные рассмотрения физических прецедентов, никак не фигурирующие в названиях соответствующих глав.
В главах 13 и 14 обсуждается феномен перколяции.
Аполлониево «мыло» в главе 18 есть не что иное, как смектическая фаза жидкого кристалла.
Понятие текстуры (главы 34 и 35) наверняка в самом ближайшем будущем найдет многочисленные новые области применения в физике.
Наконец, позвольте мне привести некоторые небезынтересные, на мой взгляд, факты. Термин «дифракталы» впервые появился в одноименной работе Берри [24] – так были названы волны, либо отраженные от фрактальной поверхности, либо преломленные пластиной, состоящей из прозрачного материала с фрактально турбулентным показателем преломления. Дифракталы представляет собой новый волновой режим, с помощью которого можно исследовать все более тонкие структурные уровни, и к которому неприменима геометрическая оптика. Некоторые из свойств дифракталов Берри вычислил в явном виде.
В другой своей работе [23] Берри рассчитал распределение мод фрактальных барабанов – резонаторов с фрактальными границами.
О ДВУХ ВИДАХ СХОДИМОСТИ
Перейдем непосредственно к цели настоящей главы. До сих пор при рассмотрении различных прецедентов от физики мы пренебрегали одним очень важным обстоятельством (либо заметали его при удобном случае под ковер): во многих областях физики один из основных этапов построения математического фрактала принципиально неосуществим.
Для начала вспомним еще раз о том, что львиная доля настоящего эссе посвящена фракталам, в построении которых участвует рекурсивная интерполяция – либо по определению, либо хотя бы через апостериорное явное построение. Каждый этап построения начинается с геометрически стандартной фигуры – например, ломаной линии, или «терагона» - и заканчивается некоторой ее интерполяцией. Фрактал является пределом таких терагонов в том смысле, что расстояние между терагоном и предельной кривой (определяемое соответствующим обобщением стандартного понятия расстояния между точками) стремится к нулю. Такой предел математики называют «сильным».
Прочие пределы, возникающие в статистическом контексте, называются «слабыми» (или «слабо определенными»). В обычном представлении различие между этими двумя видами пределов очень тонкó. Тема слабой сходимости, однако, проигрывает все те случаи (как давно известные, так и новые), когда случайные фракталы соприкасаются с «решеточной физикой», что является обычной практикой современной статистической физики.
В разговоре мы будем опираться на некоторые совсем свежие примеры фракталов в физике, а также коснемся одной весьма подходящей к нашему случаю и очень важной проблемы из области решеточной гидрологии.
ФРАКТАЛЬНЫЙ ПРЕДЕЛ СЛУЧАЙНОГО БЛУЖДАНИЯ
Для начала отметим роль слабой сходимости в контексте броуновского движения. Как мельком упоминалось в главе 25, случайное блуждание на решетке (состоящей, например, из точек, координаты которых являются исключительно целыми числами) можно «учащать» до тех пор, пока шаг решетки не станет пренебрежимо малым, а его влияние на наблюдаемый результат – ничтожным.
Общеизвестно, что данная процедура «порождает» броуновское движение, однако термин «порождать» приобретает здесь новый смысл. Последовательность терагонов, которую мы использовали в главе 6 для построения кривой Коха, можно сравнить с картиной, детализация которой постепенно увеличивается посредством все более точной фокусировки. Что же касается последовательности учащенных случайных блужданий, то она ведет себя совсем иначе: на одном этапе случайное блуждание приближается к одному броуновскому движению, на следующем этапе оно подходит ближе, но уже к другому броуновскому движению, потом еще ближе – к третьему и так далее… не в состоянии осесть на каком-то одном месте. Это обстоятельство дает математикам полное право называть процесс сходимости случайного блуждания слабым или слабо определенным. С тем же правом конечно-учащенное случайное блуждание мы можем рассматривать как фрактальную кривую, внутренний порог которой равен шагу решетки. Однако это не тот порог, который знаком нам по предыдущим главам. Тот внутренний порог накладывался a posteriori на определенные геометрические построения, которые в теории не предполагают наличия какого бы то ни было порога и которые можно интерполировать до бесконечно малых масштабов, получая при этом фракталы. Случайное же блуждание интерполировать никоим образом нельзя.
ФРАКТАЛЫ В «РЕШЕТОЧНОЙ ФИЗИКЕ»
Предыдущие рассуждения касаются далеко не только броуновского движения. В самом деле, у статистической физики имеются весьма серьезные причины заменять многие из стоящих перед ней реальных задач их аналогами, ограниченными некоторой решеткой. Можно даже, пожалуй, сказать, что почти вся статистическая физика образует некую часть более общей «решеточной физики».
Как я указывал в своих предыдущих эссе (и это было подтверждено многими исследователями), в решеточной физике в изобилии встречаются фракталы и почти фракталы. Первые представляют собой фигуры в пространстве параметров – таковы, например, упоминаемые в пояснении к рис. 125 чертовы лестницы. Вторые – это встречающиеся в реальном мире фигуры, которые не являются фракталами, так как их никоим образом нельзя интерполировать до бесконечно малых масштабов, однако они похожи на фракталы в той степени, в какой фрактальны их свойства в средних и больших масштабах. С замечательным примером такой фигуры мы встречались в главах 13 и 14 при рассмотрении бернуллиевой перколяции.
Читать дальшеИнтервал:
Закладка: