Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Нет нужды говорить, что я целиком и полностью убежден в том, что учащенные версии упомянутых фигур слабо сходятся к фрактальным пределам. На этом моем убеждении, собственно, и основаны рассуждения в главах 13 и 14. Физики также считают это допущение как нельзя более убедительным, несмотря даже на то, что его полное математическое доказательство, насколько мне известно, имеется только для случая броуновского движения. Исходя из вышесказанного, я склоняюсь к тому, чтобы рассматривать эти нефрактальные фигуры с предполагаемыми фрактальными пределами как решеточные фракталы. Чуть позже мы поговорим и о других важных примерах решеточных фракталов.
Можно сделать еще одно – связанное с предыдущим, но отличное от него – предположение, которое заключается в том, что реальные задачи, для которых решеточная физика предоставляет удобное упрощение, связаны с теми же (или почти с теми же) фракталами. Это предположение получило поддержку в работе [535] в отношении полимеров (которыми мы также вскоре займемся).
ЛОКАЛЬНОЕ ВЗАИМОДЕЙСТВИЕ / ГЛОБАЛЬНЫЙ ПОРЯДОК
Решеточной физике мы обязаны одним интереснейшим открытием, которое заслуживает того, чтобы о нем узнал весь мир. Заключается оно в том, что при определенных условиях чисто локальные взаимодействия имеют глобальные последствия. Приведу простой пример: результатом взаимодействий между соседними элементарными спинами является магнит, в удивительных свойствах которого всякий может убедиться сам.
Здесь, полагаю, мы вправе помечтать о том, что когда-нибудь феномены, для представления которых я использовал дробные броуновские фракталы, получат аналогичное объяснение.
ВЫМЫШЛЕННЫЙ ПРИМЕР
Позвольте мне описать некий пример, который фундаментальнейшим образом не согласуется с физическим механизмом упорядочения, однако обладает некоторыми несомненными достоинствами: он прост, и, кроме того, в нем (в качестве примера доказуемого слабого предела) фигурирует наша старая фрактальная приятельница, салфетка Серпинского (см. главу 14). В точках с целочисленными координатами разместим спины таким образом, чтобы в четные (нечетные) моменты времени они занимали четные (нечетные) места. Знак каждого спина определяется в соответствии со следующим правилом: спин S(t,n) в момент времени t и в позиции n отрицателен, если спины S(t−1,n−1) и S(t+1,n+1) одинаковы, и положителен в противном случае.
Прямая, состоящая из равномерно расположенных отрицательных спинов, остается после проведения описанной процедуры инвариантной. Проследим эффекты, возникающие при включении в нее положительной «примеси» в точке с координатой n=0 в момент времени t=0 . Все спины S(1,n) отрицательны, кроме спинов, расположенных в точках n=−1 и n=+1 . Последующие конфигурации выглядят таким вот образом:
Многие читатели, несомненно, узнают в этом построении треугольник Паскаля, в котором места расположения нечетных биномиальных коэффициентов отмечены знаками + . В полном треугольнике Паскаля t - я строка дает значения коэффициентов в разложении бинома (a+b) t .
Всякий, кто прочел главу 14, сразу увидит, что если соединить каждый плюс с соседними плюсами, то получится граф, родство которого с салфеткой Серпинского просто бросается в глаза (см. [499]). Более того, при уменьшении шага решетки этот граф сходится именно к салфетке Серпинского.
СЛУЧАЙНОЕ БЛУЖДАНИЕ БЕЗ САМОПЕРЕСЕЧЕНИЙ И ГЕОМЕТРИЯ ЛИНЕЙНЫХ ПОЛИМЕРОВ
Обратимся теперь к одной очень важной конкретной задаче. При случайном блуждании без самопересечений (СББС) точка движется вперед, не обращая никакого внимания на свои предыдущие положения; исключением является лишь запрет проходить через одно место более одного раза и забредать туда, откуда невозможно найти выход. Все допустимые направления равновероятны.
На прямой такое движение не представляет никаких проблем: оно неизбежно распространяется в обоих направлениях и никогда не пересекает само себя.
Что касается плоского и пространственного случаев, то здесь возникает интересная и весьма сложная проблема – настолько сложная, что до сих пор ни одна аналитическая попытка найти ее решение не увенчалась успехом. Однако практическая значимость этой проблемы при изучении макромолекул (полимеров) настолько велика, что она стала объектом тщательных эвристических исследований и детального компьютерного моделирования. Ниже приводится наиболее интересный для нас результат, полученный Ч. Домбом и описанный в [15].
После n≫1 этапов построения среднеквадратическое смещение R n имеет порядок, равный величине n , возведенной в степень, которую мы обозначим через 1/D .
Исходя из этого утверждения, можно с большой долей уверенности заключить, что внутри окружности или сферы радиуса R с центром в некоторой точке случайного блуждания содержится приблизительно R D других точек этого случайного блуждания. Хороший повод удостовериться, является ли величина D фрактальной размерностью.
В случае прямой D (тривиально) равно единице. Согласно теоретическим рассуждениям Флори и результатам компьютерного моделирования для E=2 и E=3 , D=(E+2)/3 (подробнее об этом можно прочесть в замечательном обзоре [99] (раздел 1.3), правда, вместо D там используется обозначение 1/v ). Фрактальная размерность D B =2 броуновского движения превышает это значение в случаях E=2 и E=3 , однако совпадает с ним при E=4 .
Согласно предельному доказательству Кестена, D→2 только при условии, что E→2 . Однако предположение о том, что D=2 при любом E≥4 , подкрепляется изящной физической аргументацией, а также одним простым фрактальным доводом, который звучит следующим образом: при E≥4 коразмерность броуновского движения равна двум, следовательно, коразмерность множества его двойных точек равна нулю, - а это означает, что броуновское движение не имеет двойных точек. Таким образом, без особых хлопот мы приходим к искомому выводу: Броуновское движение нигде не пересекает само себя.
Значения D , как оказалось, весьма чувствительны к исходным допущениям. Виндвер обнаружил, что если полимер в 3 – пространстве состоит из двух различных типов атомов (т.е., блуждание не ограничено решеткой), то D=2/1,29 , а это, по его мнению, существенно меньше значения, полученного Домбом ( D=1,67~2/1,2 ). В случае полимера, растворенного в каком-либо реакционно-способном растворителе, пространство вложения оказывается еще менее инертным; величина D , в частности, становится в этом случае зависимой от протекающей реакции. Точка θ определяется как точка, в которой D принимает свое броуновское движение D B =2 . В хороших растворителях D<2 , причем чем выше качество растворителя, тем меньше D ; совершенный растворитель, в частности, дает D=2/1,57 при E=2 и D=2/1,37 при E=3 . Даже с самым плохим растворителем величина D в 2 – пространстве никогда не достигает значения D=2 , однако в 3 – пространстве плохой растворитель с легкостью обеспечивает D>2 . В действие вступают коагуляция и фазовое разнесение, и неразветвленная цепь больше не может считаться удовлетворительной моделью.
Читать дальшеИнтервал:
Закладка: