Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оба генератора удовлетворяют параметрам b=1/r=7 и N=40 , отсюда D~1,8957 . Правда, с первого взгляда не совсем очевидно, откуда взялось N=40 , - и, тем не менее, так оно и есть, в чем можно убедиться, внимательно рассмотрев следующие этапы построения, приведенные на верхнем рисунке с семикратным увеличением.

Равенство размерностей D этих двух ковров также не бросается в глаза. Впечатление усугубляется еще и тем, что левый ковер, судя по его виду, содержит гораздо бóльшие пустоты, т.е. является более лакунарным (от лат. lacuna «пустое место, пробел»). В тексте главы рассматривается несколько различных методов, которые помогут вам избавиться от этого ложного впечатления.

Размерность D~1,8957 замечательно близка к размерности бернуллиевой перколяции (см. конец главы 13), однако это обстоятельство не должно вводить нас в заблуждение: топологически эти два случая очень различаются.

35 ОБОЩЕНИЯ ТРЕМЫ И УПРАВЛЕНИЕ ТЕКСТУРОЙ

Сообразуясь с логикой нашего эссе, в главах 31 – 33 мы ввели трема – фракталы с помощью простейших примеров, в основе которых лежат интервалы, круги и шары. Полученные результаты радуют взор своим разнообразием, которое, однако, вряд ли можно сравнить с богатствами, ожидающими нас среди трем более общей формы.

Да, разумеется, в работе [132] со всей однозначностью показано, что размерность трема – фрактала определяется исключительно распределением длин (площадей, объемов) трем. Однако те дни, когда размерность D была единственным числовым параметром, характеризующим фрактал, остались в прошлом, как только мы ввели в главе 34 понятия сукколяции и лакунарности. В настоящей главе показано, какое влияние на эти характеристики оказывает форма тремы. И снова мы оказываемся свидетелями чудесного совпадения спроса, предъявляемого прецедентными исследованиями, и предложения, поступающего со стороны геометрии.

Исследуя трема – фрактал на предмет сукколяции, мы убеждаемся в том, что форма трем влияет на величину D крит, т.е. при заданном значении D от нее зависят знак и величина разности D−D крит.

Лакунарность фрактала также зависит от формы трем, и здесь мы можем сделать несколько более продвинутых по сравнению с предыдущими главами заявлений. Из линейных трема – фракталов (глава 31) самыми лакунарными являются пыли Леви; наиболее простой и естественный путь получения любой меньшей степени лакунарности заключается в использовании в качестве тремы объединения многих интервалов. В случае пространственных трема - фракталов, получаемых непосредственным построением (глава33), простейший способ изменения лакунарности состоит в изменении формы каждой тремы с круглой или шарообразной на любую другую. В случае же пространственных трема – фракталов, субординированных броуновскому или дробному броуновскому движению (глава 32), следует в качестве субординатора взять какую-либо другую фрактальную пыль, менее лакунарную, чем пыль Леви.

К сожалению, отведенное мне время не бесконечно, а для того, чтобы привести в надлежащий (пригодный к публикации) вид все теоретические рассуждения, касающиеся трема – фракталов, потребуется значительная их переработка. Так что эта глава (собственно, последняя в настоящем эссе) поневоле оказывается не более чем наброском.

ТРЕМА – ГЕНЕРАТОРЫ. ИЗОТРОПИЯ

Термин форма тремы, использованный во вступительном разделе, связан с понятием трема – генератора. Мы, конечно же, уже знакомы с термином генератор, который встречался нам в нескольких предшествующих главах. Мы также помним о том, что ломаные генераторы канторовых и коховых фигур, равно как и трема-генераторы фигур Серпинского, определяют одновременно и саму фрактальную фигуру, и ее размерность D . Здесь же, обратите внимание, трема – генератор определяет все, кроме D .

Неслучайный трема – генератор.Такой генератор представляет собой открытое множество с некоторым, произвольно выбранным внутри него, центром, причем длина (площадь, объем) этого множества равна 2 ( π или 4π/3 , соответственно). А тремы – это перемасштабированные версии описанного генератора. Положения и размеры трем случайны, а распределение вероятностей совпадает с аналогичным распределением в главах 31 и 33.

В случае E=1 , например, количество трем, длина которых превышает r , а центр расположен внутри интервала длины Δt , по-прежнему является пуассоновской случайной величиной с ожиданием (E−D * )Δt/τ . Кроме того, как показано в [132], остается справедливой и хорошо известная нам формула для определения размерности D= max (D * ,0) - правда, с некоторыми нестрогими ограничивающими допущениями относительно формы трема – генератора. (Отдельного рассмотрения заслуживает вопрос о причине возникновения этих ограничивающих допущений – присущи ли они трема – фракталам изначально, или мы обязаны ими методу доказательства.)

Ограниченность генератора.Поскольку теоретической целью построения с использованием трем является создание глобальных структур из локальных взаимодействий, разумно будет ввести допущение о локальности (т.е. ограниченности) трем. Если же тремы не ограничивать, то они могут привести к весьма неожиданным сюрпризам. На рис. 398 представлено дальнейшее обобщение модели трем.

Определение пустот.Пустой промежуток теперь представляет собой не объединение трем, но объединение наибольших открытых компонентов трем.

Неслучайная изотропия.Для обеспечения изотропности генератора мы должны иметь возможность выбирать точку отсчета таким образом, чтобы генератор представлял собой множество точек, удовлетворяющих следующему условию: расстояния между этими точками и точкой отсчета должны принадлежать некоторому множеству на положительной вещественной оси (обычно это набор заданных интервалов). Изотропный случай является самым простым и наиболее хорошо изученным.

Однако неизотропия здесь также не исключается. В частности, фрактальную пыль можно сделать асимметричной относительно прошлого и будущего.

Случайный трема – генератор.Такой генератор представляет собой частично или полностью случайное множество, длина (площадь, объем) которого равна единице. Было бы неплохо тщательно рассмотреть вопрос о применимости к данному случаю теоремы, доказанной в [132].

Наименьшего уровня случайности можно достичь, если выбрать из процесса, генерирующего случайные множества, какую-то ограниченную совокупность элементов и отождествить с этой совокупностью все наши тремы (вплоть до смещения и размера). Следующий практически полезный уровень случайности достигается путем добавления случайного поворота, выбираемого для каждой тремы отдельно и независимо от других. Еще более общая картина возникает, когда каждая трема является результатом независимой выборки из какого-либо генерирующего случайные множества процесса. Выбранные множества не обязательно должны иметь одинаковый объем, объемы выравниваются на следующем этапе. Затем выборки поворачиваются. Можно представить случай, когда повороты зависят один от другого, однако я пока таких случаев не рассматривал.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x