Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Кроме того, для суммы броуновской функции и канторовой лестницы с δ получаем D=2−H и λ=δ , следовательно, 1 .

Резюме.Подтверждение эвристически полученного неравенства 1≤D≤2−λ можно найти в работах [317] и [30]. См. также [255], с. 27.

Об определении «фрактала».В разделе фракталы упоминается о желательности расширения рамок определения термина фрактал с тем, чтобы они включали и канторову лестницу. Может быть, нам следует сказать так: кривая фрактальна, если показатель λ<1 , а показатель α близок к λ при «достаточно многих» значениях t ? Мне бы не хотелось следовать этим путем, так как подобные расширения довольно громоздки и, кроме того, в них проводится принципиальное различие между случаями D T =0 и D T >0 .

Функции из прямой в плоскость.Возьмем две непрерывные функции X(t) и Y(t) с ЛГ – показателями λ 1 и λ 2 . Эвристически рассуждая, можно предположить, что для покрытия графика векторной функции от координат X(t) и Y(t) на участке t∈[0,1] потребуется не больше r λ1+λ2−3 кубов со стороной r ; следовательно, 1≤D≤3−(λ 1 2 ) . Размерность обыкновенного броуновского следа из прямой в плоскость D=2 вполне согласуется с этим неравенством.

Проекции.Построим непрерывный след, проецируя функцию {X(t),Y(t)} на плоскость (x,y) . При λ 1 2 эвристика подсказывает, что для покрытия графика нам понадобится не более 1/r квадратов со стороной r λ ; следовательно, 1≤D≤ min (2,1/λ) . Рассмотрим аналогичным образом непрерывный след функции {X(t), Y(t), Z(t)} , координаты которой имеют одинаковые ЛГ – показатели λ . Эвристическое рассуждение дает 1≤D≤ min (3,1/λ) . При λ 1 ≠λ 2 непрерывный след функции {X(t),Y(t)} следует покрывать квадратами со стороной r max λ , значит:

1≤D≤2−max{0, (λ 1+λ 2−1)/ max(λ 1,λ 2)} .

Все эти выводы нашли подтверждение в [317].

XII О ЛЮДЯХ И ИДЕЯХ

40 БИОГРАФИЧЕСКИЕ ОЧЕРКИ

В качестве вступления к этой главе, посвященной исключительно жизнеописаниям, отметим, что ученым, придерживающимся в широкой реке научной мысли главного течения, редко достается в награду (или в наказание?) жизнь, о которой интересно рассказывать. Возьмем, например, биографию Джона Уильяма Стретта, третьего барона Рэлея. Следующие одна за другой с завидным постоянством научные победы прославили его имя почти во всех областях науки. А жизнь его, между тем, протекала без каких-либо особых происшествий, умеренно и спокойно, посвященная исключительно его развитию как ученого. Единственное событие, способное сойти за происшествие, случилось, когда юный Уильям отказался при поступлении в кембриджский Тринити–Колледж от аристократических привилегий, полагавшихся ему, как старшему сыну лорда – землевладельца.

Был в науке и Великий Романтик – Эварист Галуа, история которого как нельзя лучше соответствует канонам высокой французской трагедии, поскольку сочетает в пределах одного дня написание работы, положившей начало развитию современной алгебры, и смерть на дуэли. И все же жизни большинства ученых подобны жизни Рэлея: их почти не затрагивают даже самые кардинальные перемены в окружающем мире (примером может служить биография А. С. Безиковича), и в конечном итоге их жизненные истории почти предсказуемы, если не считать случайных красочных подробностей, описывающих первые проявления их таланта или их вступление в большую науку. Трехлетний Карл Фридрих Гаусс исправляет ошибку в арифметических расчетах своего отца. Юный Шриниваса Рамануджан заново изобретает математику. Харлоу Шепли, обнаружив, что для поступления на факультет журналистики ему придется ждать целый семестр, решает выбрать себе другой факультет из алфавитного списка. Он пропускает археологию, так как не знает, что означает это слово, переходит к астрономии … и находит свою судьбу. Менее типична история Феликса Хаусдорфа. До 35 лет он посвящает бóльшую часть своего времени философии, поэзии, сочинению и постановке пьес и другим подобным занятиям. Затем он останавливается на математике и вскоре представляет научной общественности свой знаменитый шедевр – «Основы теории множеств» [202].

Биографиям, скроенным по единому образцу, несть числа; истории же, отобранные для этой главы, - особенные. В них все не так. Вступление в большую науку откладывается на неопределенный срок – во многих случаях оно происходит лишь посмертно. Герой всерьез задумывается о том, в свое ли время его угораздило родиться. Как правило, герой – индивидуалист – одиночка. Его можно назвать наивным или утопистом – так называют определенного рода художников, - однако, на мой взгляд, ему больше подходит просторечное «белая ворона». И в тот момент, когда опускается занавес, символизируя окончание пролога в пьесе его жизни, мы видим, что наш герой все еще – по прихоти ли судьбы, по собственному ли выбору – не выбрал себе цвета.

Работы «белых ворон» отличаются какой-то особенной свежестью. Даже те, кто в конечном итоге так и не достиг сколь-нибудь значительных результатов, демонстрируют ярко выраженный оригинальный стиль, что роднит их с более удачливыми собратьями, титанами научной мысли. Причина здесь, похоже, заключается в наличии достаточного количества свободного времени. Как однажды заметила дочь д' Арси Томпсона по поводу его книги «Рост и форма» [568]: «Можно только гадать, была ли вообще написана подобная книга, если бы ее автор не провел тридцать лет жизни в глуши». К моменту выхода книги д' Арси Томпсону было уже 57. Максимум научной активности многих других белых ворон также приходится на довольно преклонные годы. Расхожее клише о том, что наука – дело молодых, к данному случаю неприменимо.

Меня привлекаю такие истории; некоторые из них оказали на меня сильное эмоциональное воздействие, которым я и хотел бы поделиться с читателем.

Как и следовало ожидать, наши герои очень отличаются друг от друга. Поль Леви, например, прожил жизнь, достаточно долгую для того, чтобы оставить глубокий след в своей области науки, однако его поклонники (среди которых я числю и себя) полагают, что он заслуживает большего; назовем это истинной славой. (То же можно сказать и о д' Арси Уэнтворте Томпсоне, который прекрасно вписался бы в компанию наших героев; нет его здесь только потому, что в сокращенном переиздании «Роста и формы» 1962 г. (см. [568]) уже имеется его подробная и хорошо документированная биография.) Льюису Ф. Ричардсону это также удалось, но едва-едва. А вот с Луи Башелье судьба обошлась суровее: никто не воспринял его статьи и монографии всерьез, и он прожил жизнь незадачливого просителя, а все его открытия были, в конечном счете, продублированы другими. Херсту повезло больше, и история его жизни весьма увлекательна. Что касается Фурнье д' Альба и Ципфа, то они, как мне кажется, заслуживают чего-то большего, чем постоянные подстрочные примечания. Таким образом, каждая из историй, собранных в этой главе, вносит посильный вклад в понимание психологии оригинально и глубоко мыслящих индивидуумов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x