Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями

Тут можно читать онлайн Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Пятьдесят занимательных вероятностных задач с решениями
  • Автор:
  • Жанр:
  • Издательство:
    неизвестно
  • Год:
    неизвестен
  • ISBN:
    нет данных
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями краткое содержание

Пятьдесят занимательных вероятностных задач с решениями - описание и краткое содержание, автор Чарльз Мостеллер, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга в действительности содержит 57 занимательных задач (семь задач скорее обсуждаются, чем решаются). Большинство задач несложно. Лишь совсем немногие из них требуют знания курса анализа, но и в этих случаях неподготовленный читатель все равно сможет понять постановку задачи и ответ.
Книга обращена к широкому кругу читателей: ученикам старших классов, педагогам, студентам.

Пятьдесят занимательных вероятностных задач с решениями - читать онлайн бесплатно полную версию (весь текст целиком)

Пятьдесят занимательных вероятностных задач с решениями - читать книгу онлайн бесплатно, автор Чарльз Мостеллер
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Эти формулы показывают что указанная вероятность одна и та же для четного N и - фото 61

Эти формулы показывают, что указанная вероятность одна и та же для четного N и для следующего за ним нечетного числа N + 1. Например, когда N = 4, надо применить вторую формулу. Шестнадцатью возможными исходами являются

ААAA BAAA ABBA BABB

*AAAB AABB BABA *BBAB

*AABA ABAB BBAA *BBBA

ABAA BAAB ABBB *BBBB

где звездочкой отмечены комбинации с равновесным положением.

Поскольку число сочетаний из 4 по 2 равно 6, то вторая формула действительно верна для этого значения N .

При N = 2 n вероятность x выигрышей A есть Пятьдесят занимательных вероятностных задач с решениями - изображение 62. Если xn , то вероятность ничьей есть 2 x / N (на основании задачи 22), а при xn эта вероятность равна 2·( Nx )/ N . Чтобы получить вероятность ничьей, находим вероятность x выигрышей, умножим ее на условную вероятность ничьей при x выигрышах и просуммируем полученные выражения, что дает

1 Если подставить в это выражение формулу для биномиальных коэффициентов и - фото 63 (1)

Если подставить в это выражение формулу для биномиальных коэффициентов и произвести необходимые сокращения, то с точностью до слагаемого

Пятьдесят занимательных вероятностных задач с решениями - изображение 64

получим Пятьдесят занимательных вероятностных задач с решениями - изображение 65, где суммирование ведется по всем возможным значениям x . Следовательно, мы можем переписать выражение (1) в виде

Пятьдесят занимательных вероятностных задач с решениями - изображение 66 (2)

Отсюда видно, что вероятность отсутствия ничьей есть

Пятьдесят занимательных вероятностных задач с решениями - изображение 67,

что после небольших преобразований может быть записано в виде

картинка 68,

как было указано выше.

24. Решение задачи о странном метро

Поезда в направлении к невесте останавливаются у перрона, куда приходит Мэрвин, скажем, в 3 00, 3 10, 3 20и т. д., поезда в противоположном направлении в 3 01, 3 11, 3 21и т. д. Чтобы поехать к матери, Мэрвин должен попасть в одноминутный интервал между поездами указанных типов.

25. Некоторые возможные решения задачи о длинах случайных хорд

Пока выражение «наудачу» не уточнено, задача не имеет определенного ответа. Следующие три возможных предположения с соответствующими тремя различными вероятностями иллюстрируют неопределенность понятия «наудачу», часто встречающуюся в геометрических задачах. Мы не можем гарантировать, что эти результаты должны согласовываться с некоторым физическим процессом, который мог бы быть использован для выбюра случайных хорд. Иначе задача могла бы быть проверена эмпирически.

Пусть радиус круга равен r .

(а). Допустим, что расстояние хорды от центра круга равномерно распределено между 0 и r . Поскольку правильный шестиугольник со стороной r можно вписать в круг, для определения искомой вероятности найдем расстояние d стороны этого шестиугольника от центра и разделим на величину радиуса. Заметим, что d — высота правильного треугольника со стороной r . Из планиметрии известно, что

Пятьдесят занимательных вероятностных задач с решениями - изображение 69

Следовательно, искомая вероятность равна

Пятьдесят занимательных вероятностных задач с решениями - изображение 70

(б). Пусть середина хорды равномерно распределена во внутренности круга. Из чертежа (рис. 4) видно, что хорда длиннее радиуса, когда середина хорды находится на расстоянии, меньшем d , от центра. Таким образом, все точки круга радиуса d , концентрического с исходным кругом, являются геометрическим местом точек середины хорд. Площадь этого круга, деленная на площадь исходного, равна

Эта вероятность равна квадрату выражения полученного в случае а Рис 4 - фото 71

Эта вероятность равна квадрату выражения, полученного в случае (а).

Рис 4 в Допустим что хорда определяется двумя точками на окружности - фото 72

Рис. 4.

(в). Допустим, что хорда определяется двумя точками на окружности исходного круга. Пусть первая точка попала в A (рис. 4). Для того чтобы хорда была короче радиуса, вторая точка должна попасть на дугу BAC , длина которой есть 1/3 длины окружности. Следовательно, вероятность того, что хорда длиннее радиуса, равна 1 − 1/3 = 2/3.

26. Решение задачи о нетерпеливых дуэлянтах

Рис 5 Пусть x и y обозначают время прибытия 1го и 2го дуэлянтов - фото 73

Рис. 5.

Пусть x и y обозначают время прибытия 1-го и 2-го дуэлянтов соответственно, измеренное в долях часа, начиная с 5 часов. Заштрихованная площадь квадрата (рис. 5) отвечает случаю, когда дуэлянты встречаются. Вероятность того, что они не встретятся, равна (11/12)², так что шансы на поединок равны 23/144 ≈ 1/6.

27. Решение задачи об осторожном фальшивомонетчике

(а) б Пусть имеется n ящиков каждый из которых содержит n монет Тогда - фото 74

(б). Пусть имеется n ящиков, каждый из которых содержит n монет. Тогда вероятность того, что извлеченная наудачу монета доброкачественна, равна 1 − 1/ n , и так как всего имеется n ящиков, то

Вычислим эту вероятность для некоторых значений n n 1 2 3 4 5 10 20 100 - фото 75

Вычислим эту вероятность для некоторых значений n .

n 1 2 3 4 5 10 20 100 1000
P (не обнаружить фальшивых монет) 0 0.250 0.296 0.316 0.328 0.349 0.358 0.366 0.3677 0.367879...=1/ e

Бросаются в глаза следующие два обстоятельства. Во-первых, выписанные в таблице числа с ростом n возрастают. Во-вторых, они стремятся к некоторому значению, которое известно математикам и равно e −1или 1/ e , где e = 2,71828... — основание натуральных логарифмов.

Воспользовавшись формулой бинома Ньютона для получим следующее выражение или 1 Если мы исследуем поведение каждого - фото 76, получим следующее выражение:

или 1 Если мы исследуем поведение каждого слагаемого скажем четвертого - фото 77

или

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Чарльз Мостеллер читать все книги автора по порядку

Чарльз Мостеллер - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Пятьдесят занимательных вероятностных задач с решениями отзывы


Отзывы читателей о книге Пятьдесят занимательных вероятностных задач с решениями, автор: Чарльз Мостеллер. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x