Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями
- Название:Пятьдесят занимательных вероятностных задач с решениями
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Чарльз Мостеллер - Пятьдесят занимательных вероятностных задач с решениями краткое содержание
Книга обращена к широкому кругу читателей: ученикам старших классов, педагогам, студентам.
Пятьдесят занимательных вероятностных задач с решениями - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
P + RP + R ² P + ... = P (1 + R + R ² + ...)
или
вероятность получить «пойнт» = P /(1 − R ).
Например, если «пойнт» равен 4,

что согласуется с полученным ранее.
Сам автор решал сначала эту задачу с помощью суммирования бесконечного ряда и был обрадован, когда несколько дней спустя обнаружил указанный здесь более простой подход.
10. Обсуждение эксперимента по психологии азартных игроков
Трудно сказать, какой предварительный взнос вы сочтете подходящим для себя. Хотя математическое ожидание выигрыша в первой игре равно пяти долларам, вы можете не захотеть платить взнос, близкий к 5 долларам, за право игры. Потеря 3 или 4 долларов может весьма много значить для игроков. Вы можете, например, предложить взнос, в 75 центов.
Кажется естественным, однако, что взнос для участия во второй игре должен быть по крайней мере таким же, как и для их первой игры. Цвет всегда может быть выбран случайным бросанием монеты, что дает 50 % шансов правильного решения и математическое ожидание выигрыша, равное 5 долларам. Кроме того, если вы располагаете информацией о склонностях вашего друга, то она может быть использована для увеличения вероятности выигрыша.
Большинство людей склонно скорее к первой игре, так как условия второй представляются им менее определенными. Автор обязан этой задачей Г. Райфа; последний сообщил ему, что идея задачи принадлежит Д. Элсбергу.
11. Обсуждение задачи о молчаливом союзе
Автор не встречал еще ни одного человека, который загадал бы многозначное число, при этом, как правило, называют числа 1, 3 и 7. В большинстве случаев была выбрана единица, но встречались также 3 и 7.
12. Обсуждение задачи «Куда идешь?»
Когда этот вопрос был задан моей дочери, она живо ответила: «Ну конечно же, им надо встретиться в самом известном месте Нью-Йорка». — «Прекрасно, но где же именно?» — спросил автор. «Откуда я знаю? Ведь мне всего девять лет».
Что же приходит в голову? Крыша здания Эмпайр Стейт Билдинг [7] Эмпайр Стейт Билдинг — одно из самых высоких зданий (449 м вместе с телебашней) в центре Нью-Йорка (прим. перев.) .
, аэропорты, бюро справок на железнодорожных станциях, статуя Свободы [8] Статуя Свободы — маяк в виде бронзовой фигуры женщины с факелом в руке, расположенный на небольшом островке вблизи Манхэттена (прим. перев.) .
, Таймс Сквер [9] Таймс Сквер — центральная площадь Нью-Йорка (прим. перев.) .
. Статую Свободы следует исключить сразу же по выяснении того, как трудно до нее добраться. Аэропорты не подходят по причине их многочисленности и удаленности от города. Тот факт, что в городе два крупных вокзала, по-видимому, исключит и их. Остаются Эмпайр Стейт Билдинг и Таймс Сквер. Я бы выбрал Эмпайр Стейт Билдинг, потому что Тайме Сквер сейчас разросся до неопределенных размеров.
Автору кажется, что если бы свидание было назначено в Сан-Франциско или в Париже, решить эту задачу было бы легче.
13. Решение дилеммы узника
Из всех задач, о которых пишут автору, настоящая доставила наибольшее количество писем.
Ошибка в рассуждении А состоит в том, что он не перечислил всех возможных событий должным образом. Выражаясь математически, узник неправильно построил пространство элементарных событий. Он считает, что опыт имеет три возможных исхода: освобождение пар AB , AC , BC с равными вероятностями. С точки зрения заключенного — это правильно построенное пространство элементарных событий для эксперимента, проводимого администрацией, которая освобождает двух узников из трех. Но эксперимент A включает еще один момент — ответ охранника. Возможные исходы для такого эксперимента и разумные вероятности для них будут:
1) A и B освобождаются, и охранник говорит B , вероятность 1/3.
2) A и C освобождаются, и охранник говорит C , вероятность 1/3.
3) B и C освобождаются, и охранник говорит B , вероятность 1/6.
4) B и C освобождаются, и охранник говорит C , вероятность 1/6.
Если на вопрос A охранник отвечает B , то апостериорная вероятность освобождения А равна вероятности исхода 1, деленной на сумму вероятностей исходов 1 и 3. Таким образом, вероятность освобождения A равна (1/3)/(1/3 + 1/6) = 2/3, так что математический расчет в конце концов отвечает здравому смыслу.
14. Решение задачи о выборе купонов
Из первой коробки мы достаем один купон. Далее, вероятность получить новый номер из второй коробки равна 4/5. Используя ответ задачи 4, видим, что приобретение нового номера потребует в среднем (4/5) −1= 5/4 коробок. Третий номер потребует (3/5) −1= 5/3, четвертый 5/2, пятый — 5 коробок.
Таким образом, среднее число коробок равно

Хотя в данном случае указанные дроби сложить, но когда в комплекте большое число купонов, удобно применить формулу Эйлера для частичных сумм гармонического ряда:

(Число C = 0.57721... называется постоянной Эйлера.) В случае комплекта из n купонов среднее число коробок приближенно равно
n ·log n + 0.577 n + ½.
Поскольку log 5 ≈ 1.6094, формула Эйлера при n = 5 дает 11.43, что весьма близко к 11.42. Членом 1/2 n в формуле Эйлера часто пренебрегают.
15. Решение задачи о театре
Например, если ряд заполнен следующим образом
BBMMBBMBMBMBBMM
(здесь B обозначает юношу, а M — девушку), то имеется 9 пар BM и MB .
Нас интересует среднее число таких пар. Если первые два места в ряду заняты лицами разных полов, то у нас уже имеется искомая пара. Вероятность этого события равна

Более того, 8/15 есть и среднее число пар на первых двух местах, так как

Такое же рассуждение применимо к каждой паре смежных мест.
Для определения среднего числа пар молодых людей эту величину надо умножить на число смежных мест, равное 14, что дает 112/15.
Более общим образом, если есть b объектов одного рода и m другого, располагаемых случайным образом в ряд, то среднее число пар, составленных из различных объектов, равно
Читать дальшеИнтервал:
Закладка: