Бенуа Мандельброт - Фрактальная геометрия природы
- Название:Фрактальная геометрия природы
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:2002
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Переходя от функций из прямой в прямую к функциям B H (t) из прямой в плоскость, можно предложить в качестве необходимого дополнения следующее альтернативное определение: среди кривых с размерностью D=1/H , параметризованных по времени, след функции B H (t) является единственной кривой, приращения которой подчиняются гауссову распределению и стационарны относительно любого смещения (т.е. «лишены складок»), а также масштабно-инвариантны относительно любого значения коэффициента r>0 .
Значение H=½ (или D=2 ) соответствует обыкновенному броуновскому движению, которое, как мы знаем, представляет собой процесс, не проявляющий персистентности (т.е. его приращения независимы). Остальные ДБД распадаются на два резко отличных друг от друга семейства. Значения показателя Херста ½ соответствуют персистентному ДБД, следами которого являются кривые с размерностью D=1/H , причем 1 . Значения показателя Херста 0 соответствует антиперсистентному ДБД.
ДРОБНОЕ ИНТЕГРОДИФФЕРЕНЦИРОВАНИЕ
После того, как желательная дельта-дисперсия определена, остается реализовать ее на практике. Если мы начинали с броуновского движения, то теперь следует привнести в него персистентность. Стандартным методом для этого является интегрирование, однако оно вносит больше персистентности, чем нам необходимо. К счастью, существует способ получить при интегрировании лишь некоторую часть стандартного эффекта. При 0 то же верно и для дифференцирования. Идея такого способа скрывается в одном из «классических, но не вполне ясных» закоулков математики. Впервые она пришла в голову еще Лейбницу (см. главу 41), а затем была воплощена Риманом, Лиувиллем и Вейлем.
Из школьного курса дифференциального исчисления мы помним, что если m - некоторое целое положительное число, то m - кратным дифференцированием функция x ½ преобразуется в функцию x ½−m , а m - кратным интегрированием - в функцию x ½+m (не забываем, разумеется, об умножении каждый раз на соответствующую константу). Алгоритм Римана – Лиувилля – Вейля обобщает это преобразование на случай нецелого m , а дробное интегродифференцирование порядка 1/D−½ , примененное к броуновскому движению, дает ДБД. Таким образом, обычная броуновская формула (смещение)∝√(время) заменяется ее обобщенным вариантом (смещение)∝(время) 1/D , где 1/D≠½ . Чего мы, собственно, и добивались.
Соответствующие формулы приведены в [404], а приближения (настоящие) описаны в [408] и [364].
Здесь имеется еще одна сложность – можно сказать, потенциальная ловушка. Алгоритм Римана – Лиувилля – Вейля включает в себя свертку, и, как следствие, может возникнуть искушение реализовать его через метод быстрого преобразования Фурье (БПФ). Поступив таким образом, мы получим периодическую функцию, т.е. функцию с исключенным систематическим трендом. При исследовании стандартных временных рядов исключение тренда не имеет практически никаких последствий, так как зависимость ограничена весьма кратким временным промежутком. В случае же ДБД исключение тренда последствия имеет (тем бóльшие, чем больше |H−½| ), причем они могут оказаться очень и очень значительными. В развернутом контексте этот эффект можно проиллюстрировать сравнением различных горных пейзажей на рисунках, помещенных после следующей главы. Рис. 370 и 371, полученные с помощью БПФ, не демонстрируют никакого общего тренда и, как следствие, имитируют форму горных вершин, тогда как на рис. 374, полученном без каких бы там ни было упрощений, общий тренд ясно виден.
Поскольку БПФ чрезвычайно экономично, часто бывает удобнее использовать все-таки его, однако период следует брать значительно длиннее, чем ожидаемый размер выборки, а также не забывать учитывать потери, которые возрастают, по мере того как H→1 .
H>½ : ДОЛГОВРЕМЕННАЯ (БЕСКОНЕЧНО ДОЛГАЯ) ПЕРСИСТЕНТНОСТЬ И НЕПЕРИОДИЧЕСКИЕ ЦИКЛЫ
Существенное свойство функции B H (t) в случае H>½ заключается в весьма особенном поведении персистентности ее приращений: она распространяется на бесконечно долгий срок. Следовательно, связь между ДБД и феноменом Херста подразумевает, что персистентность, наблюдаемая в гидрологической статистике, не ограничена короткими временными интервалами (такими, например, как срок службы фараоновых министров) и даже на тысячелетия. Степень персистентности измеряется параметром H .
Персистентность весьма ярко проявляет себя на графиках приращений функции B H (t) и в статистике объемов годового стока рек, каковую статистику и моделируют эти приращения. Почти все выборки выглядят как «случайные шумы» на некотором фоне, проходящие несколько циклов вне зависимости от длины выборки. Однако эти циклы не являются периодическими, т.е. их нельзя экстраполировать при увеличении длины выборки. Кроме того, в такой выборке можно часто наблюдать некий основополагающий тренд, который вовсе не обязательно продолжится в экстраполяции.
Эти наблюдения становятся еще интереснее, если учесть, что аналогичное поведение статистических выборок часто наблюдается в экономике: излюбленным занятием экономистов является разложение любого набора данных на тренд, несколько циклов и шум. Такое разложение призвано облегчить понимание основополагающих механизмов экономики, однако, как мы только что увидели на примере ДБД, и тренд, и циклы могут быть порождены шумом, который сам по себе ничего не значит.
Интерполяция.В том случае, когда обыкновенная броуновская функция B(t) известна в моменты времени t 1 ,t 2 ,... (не обязательно равностоящие), ожидаемые значения B(t) между этими моментами вычисляются с помощью линейной интерполяции. В частности, интерполяция на интервале [t j,t j−1] зависит исключительно от значений B H в моменты t j и t j+1 . И напротив, во всех случаях H≠½ интерполяция функции B H (t) нелинейна и зависит от всех t m и от всех B H (t m ) . При увеличении значения t m−tj влияние B H (t m ) уменьшается, но медленно. Таким образом, интерполяцию функции B H можно описать как глобальную. Случайные кривые срединного смещения, рассмотренные в главе 26, ведут себя совершенно иначе, поскольку их интерполяции линейны на определенных временных интервалах. В этом и заключается самая суть различия между двумя упомянутыми процессами.
Читать дальшеИнтервал:
Закладка: