Бенуа Мандельброт - Фрактальная геометрия природы

Тут можно читать онлайн Бенуа Мандельброт - Фрактальная геометрия природы - бесплатно полную версию книги (целиком) без сокращений. Жанр: Математика, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Бенуа Мандельброт - Фрактальная геометрия природы краткое содержание

Фрактальная геометрия природы - описание и краткое содержание, автор Бенуа Мандельброт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки.
Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.

Фрактальная геометрия природы - читать онлайн бесплатно полную версию (весь текст целиком)

Фрактальная геометрия природы - читать книгу онлайн бесплатно, автор Бенуа Мандельброт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Самый простой довод в пользу такого нежелания состоит в том, что настоящее определение, как мы вскоре увидим, исключает из семейства фракталов кое-какие множества, которые нам не хотелось бы терять.

Имеется и иное фундаментальное соображение: мое определение включает размерности D и D T , однако понятие фрактальной структуры является, по всей видимости, более базовым, чем D или D T . По сути, понятия размерностей получили неожиданное новое применение и, как следствие, бóльшую значимость!

Иными словами, должна существовать возможность определить фрактальную структуру как инвариантную под воздействием некоторой соответствующей определенным требованиям совокупности гладких преобразований. Задача эта, однако, едва ли окажется простой. Для того чтобы оценить ее сложность в стандартном контексте, вспомним хотя бы о том, что под некоторые определения комплексного числа попадают и вещественные числа! На данном этапе основной для нас является необходимость провести границу между простыми фрактальными множествами и стандартными множествами евклидовой геометрии. Этой необходимости мое определение отвечает.

Мое очевидное отсутствие энтузиазма в отношении определения фракталов было, несомненно, отмечено (и, надеюсь, правильно понято) многими выдающимися математиками, не обнаружившими такого в эссе 1975 г. Тем не мене, мы вполне можем предпринять кое-какие шаги для уточнения существующего определения.

1. ОПРЕДЕЛЕНИЕ

Впервые фрактальное множество было определено в предисловии к эссе 1975 г. как множество в метрическом пространстве, для которого верно следующее неравенство:

D>D T ,

где D - размерность Хаусдорфа – Безиковича, а D T - топологическая размерность.

Фракталы, описанные в этой книге, представляет собой, за одним исключением, множества в евклидовом пространстве размерности E<���∞ . Их можно назвать евклидовыми фракталами. Исключение представлено в главе 28: броуновскую береговую линию на сфере можно рассматривать как риманов фрактал.

2. КРИТИКА. РАЗМЕРНОСТИ ЧАСТИЧНО АРИФМЕТИЧЕСКИЕ И ЧИСТО ФРАКТАЛЬНЫЕ

Вышеприведенное математическое определение является строгим, но не окончательным. Желая уточнить его, мы могли бы предложить несколько, на первый взгляд, вполне естественных поправок, однако здесь следует соблюдать известную осторожность.

Давным-давно, в поисках подходящей меры для свойств, которые впоследствии назовут фрактальными, я решил остановиться на размерности Хаусдорфа – Безиковича D , так как она была изучена основательнее остальных. Мне, однако, до сих пор не дает покоя то обстоятельство, что авторы трактатов, подобных [141], считают своим долгом вводить все новые и новые бесчисленные варианты мер, отличающихся от D весьма незначительными деталями. Как бы то ни было, рассмотрение этих деталей можно пока отложить.

Кроме того, при наличии нескольких возможных вариантов размерностей необходимо избегать тех, что связаны с явно внешними характеристиками. Наиболее же существенно то, что в понятии размерности D совершенно отсутствует арифметический аспект, чего нельзя сказать ни о размерности Фурье D F (с. 511), ни о показателе Безиковича – Тейлора (с. 510, см. также [251], с. 89).

3. ПРОМЕЖУТОЧНЫЕ СЛУЧАИ ХАУСДОРФА

Промежуточные случаи всегда очень проблематичны. Несправляемую кривую с размерностью D=1 можно a priori назвать как фрактальной, так и нефрактальной; то же верно и в случае любого множества, для которого D=D T , а хаусдорфова мера, полученная с помощью пробной функции h(ρ)=γ(D)ρ D , бесконечна (не может обратиться в нуль). Приведу еще более раздражающий пример: канторова чертова лестница (см. рис. 125) на интуитивном уровне воспринимается как фрактал, поскольку она самым очевидным образом демонстрирует различные масштабы длины. Меня решительно не устраивает, что ее нельзя считать фракталом, пусть даже D=1=D T (см. с. 541). За неимением иных критериев, я провожу границу, руководствуясь соображениями краткости определения. Если (и когда) будет предложен другой достойный критерий, определение нужно будет соответствующим образом изменить. См. также раздел хаусдорфова мера …, 8.

4. ВАРИАНТ ОПРЕДЕЛЕНИЯ

Понятие емкостной размерности или размерности Фростмана (см. потенциалы и емкости, 4) удовлетворяет критерию, установленному в подразделе 2 данного раздела, просто потому, что ее значение совпадает со значением D . Следовательно, можно сформулировать альтернативное определение фрактала как множества, емкостная размерность которого больше его топологической размерности.

5. ФРАКТАЛЬНЫЕ ВРЕМЕНА, ВНУТРЕННИЕ И ЛОКАЛЬНЫЕ

Некоторое количество сырого материала на эту тему можно найти в главе XII «Фракталов» 1977 г.

ФУНКЦИЯ ВЕЙЕРШТРАССА И РОДСТВЕННЫЕ ЕЙ ФУНКЦИИ. УЛЬТРАФИОЛЕТОВАЯ И ИНФРАКРАСНАЯ КАТАСТРОФЫ

Комплексная функция Вейерштрасса имеет вид

где b1 некоторое вещественное число а w записывается либо как wb H - фото 193,

где b>1 - некоторое вещественное число, а w записывается либо как w=b −H (0 , либо как w=b D−2 (1 . Вещественная и мнимая части функции W 0 (t) называются, соответственно, косинусоидой и синусоидой Вейерштрасса.

Функция W 0 (t) непрерывна, но нигде не дифференцируема. Однако ее формальное обобщение на случай D<1 и непрерывно, и дифференцируемо.

Кроме самой функции W 0 (t) в настоящем разделе рассматриваются некоторые ее варианты; необходимость в их представлении обусловлена тем новым смыслом, который придала функции Вейерштрасса теория фракталов.

Частотный спектр функции W 0 (t) .Термин «спектр», на мой взгляд, перегружен значениями. Под частотным спектром понимается множество допустимых значений частоты f безотносительно к амплитудам соответствующих составляющих.

Частотный спектр периодической функции представляет собой последовательность положительных целых чисел. Частотный спектр броуновской функции – это ℝ + . Частотный же спектр функции Вейерштрасса есть дискретная последовательность b n от n=1 до n=∞ .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Бенуа Мандельброт читать все книги автора по порядку

Бенуа Мандельброт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фрактальная геометрия природы отзывы


Отзывы читателей о книге Фрактальная геометрия природы, автор: Бенуа Мандельброт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x